ノルム制約・スパース正則化付きKL基準NMFの補助関数法に基づく最適化

☆和気佑弥, 北村大地, 綾野翔馬(香川高専)

本発表の概要

• NMFにスパース正則化を付与したSNMFについて掘り下げる

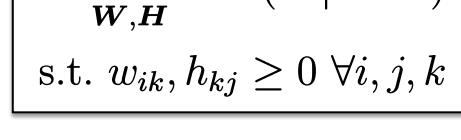
- 本発表ではSNMFの単調非増加性を保証した乗法更新式を提案する
- 実験では単調非増加性を維持したまま<u>従来手法と同等以上の性能</u>を示した

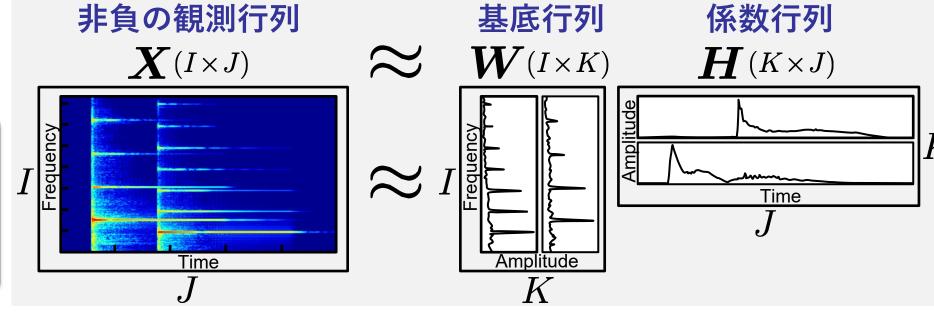
1. 研究背景

非負值行列因子分解(Nonnegative matrix factorization: NMF) - 低ランク近似手法

NMFの最適化問題

 $egin{aligned} \operatorname{Minimize} \ \mathcal{D}(oldsymbol{X} | oldsymbol{W} oldsymbol{H}) \end{aligned}$





スパースNMF(sparse NMF: SNMF)とスケール任意性問題

 $\text{Minimize } \mathcal{D}(\boldsymbol{X}|\boldsymbol{W}\boldsymbol{H}) + \mu \|\boldsymbol{H}\|_1$ - 損失関数 \mathcal{D} s.t. $w_{ik}, h_{kj} \geq 0 \ \forall i, j, k$

・ $L_1 / ルム \|oldsymbol{H}\|_1$ の同時最小化

スパースなΗが推定される $\mathcal{D}(oldsymbol{X}|oldsymbol{W}oldsymbol{H}) + \mu \|oldsymbol{H}\|_1$ スケール任意性

最適化問題 $\displaystyle \operatorname*{Minimize}_{m{ heta} \in \mathbb{R}^n_{>0}} \mathcal{J}(m{ heta})$

SNMFのスケール任意性問題「 WHのスケール任意性で 正則化項が無意味となる

 $\mathbf{W}\mathbf{H} = (\alpha \mathbf{W})(\mathbf{H}/\alpha)$ -定 $\mathcal{D}(\boldsymbol{X}|(\alpha \boldsymbol{W})(\boldsymbol{H}/\alpha)) + \mu \|(\boldsymbol{H}/\alpha)\|_1$ 最小化

既存SNMFの最適化手法と特徴

射影勾配法

勾配降下後に非負制約へ射影 ステップサイズが必要

 $\theta_i^{(t+1)} = \max\left(0, \theta_i^{(t)} - \eta_t \frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right)$

影 勾配の正項と負項から乗法更新式を構成 $ \theta_i^{(t+1)} = \theta_i^{(t)} \cdot \frac{\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]}{\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_+}, \ \frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i} = \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_+ - \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]}{\mathbf{E}\mathbf{g}} $		Heuristic update rule [Févotte+, 2011]			
$\theta_i^{(t+1)} = \theta_i^{(t)} \cdot \frac{\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{-}}{\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{-}}, \frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i} = \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{+} - \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{-}$	影	勾配の正項と負項から乗法更新式を構成			
		$\theta_i^{(t+1)} = \theta_i^{(t)} \cdot \frac{\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{-}}{\left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{-}}, \frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i} = \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{+} - \left[\frac{\partial \mathcal{J}(\boldsymbol{\theta}^{(t)})}{\partial \theta_i}\right]_{-}$			

補助関数法 / 上界最小化(majorization-minimization: MM)アルゴリズム [Hunter+, 2000] $\mathcal{J}(\boldsymbol{\theta}) = \text{Minimize } \mathcal{J}^+(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}})$ 目的関数の上界となる補助関数の設計と最小化を反復

• 反復最小化における目的関数値の単調非増加性を保証 \mathcal{J}^+ :補助関数 $ilde{m{ heta}}$:補助変数

文献	最適化問題	最適化手法	単調非増加性
[Hoyer, 2002]	Minimize $\mathcal{D}_{\mathrm{Eu}}(\boldsymbol{X} \boldsymbol{W}\boldsymbol{H})$ s.t. $w_{ik} \geq 0, h_{kj} \geq 0, s(\boldsymbol{h}_k) = 1 \ \forall i, j, k$	射影勾配法	無し
[Hoyer, 2004]	$\begin{aligned} & \underset{\boldsymbol{W},\boldsymbol{H}}{\text{Minimize }} \mathcal{D}_{\text{KL}}(\boldsymbol{X} \boldsymbol{W}\boldsymbol{H}) + \mu \ \boldsymbol{H}\ _{1} \\ & \text{s.t. } w_{ik} \geq 0, h_{kj} \geq 0, \ \boldsymbol{w}_{k}\ _{1} = 1 \ \forall i,j,k \end{aligned}$	射影勾配法	無し
[Liu+, 2004]	$\begin{aligned} & \underset{\mathbf{w}, \mathbf{H}}{\text{Minimize }} \mathcal{D}_{\text{KL}}(\mathbf{X} \mathbf{W}\mathbf{H}) + \mu \ \mathbf{H}\ _1 \\ & \text{s.t. } w_{ik} \geq 0, h_{kj} \geq 0, \ \mathbf{w}_k\ _1 = 1 \ \forall i, j, k \end{aligned}$	補助関数法かつ 反復毎の正規化	無し
[Eggert+, 2004] [Le Roux+, 2015]	$\begin{array}{c} \text{Minimize } \mathcal{D}_{\beta}(\boldsymbol{X} \widetilde{\boldsymbol{W}}\boldsymbol{H}) + \mu \ \boldsymbol{H}\ _{1} \\ \text{s.t. } w_{ik} \geq 0, h_{kj} \geq 0 \ \forall i, j, k \end{array}$	Heuristic update rule	無し
[Leplat+, 2021]	Minimize $\mathcal{D}_{\beta}(\boldsymbol{X} \boldsymbol{W}\boldsymbol{H}) + \mu \ \boldsymbol{H}\ _1$ s.t. $w_{ik} \geq 0, h_{kj} \geq 0, \ \boldsymbol{w}_k\ _2^2 = 1 \ \forall i, j, k$	ラグランジュの未定乗数法 +ニュートン・ラプソン法	保証有り
[Marmin+, 2023]	$ \begin{array}{c} \text{Minimize } \mathcal{D}_{\beta}(\boldsymbol{X} \boldsymbol{W}\boldsymbol{H}) + \mu \ \boldsymbol{W}\boldsymbol{H}\ _{1} \\ \text{s.t. } w_{ik} \geq 0, h_{kj} \geq 0 \ \forall i, j, k \end{array} $	補助関数法	保証有り
スパースネス 制約式	$\frac{s(\boldsymbol{h_k})}{s(\boldsymbol{h_k})} = \frac{\sqrt{J} - \left(\sum_j h_{kj} \right) / \sqrt{\sum_j h_{kj}^2}}{\sqrt{J} - 1}$	基底行列の 列ベクトル正規化 $\widetilde{oldsymbol{W}} = \left[rac{oldsymbol{w}_1}{\ oldsymbol{w}_1\ _1} ight]$	$egin{array}{cccc} oldsymbol{w}_K & & & & & & & \\ oldsymbol{w}_K & & & & & & & & \\ oldsymbol{w}_K & & & & & & & & \\ oldsymbol{w}_K & & & & & & & \\ oldsymbol{w}_K & & & & & & & \\ oldsymbol{w}_K & & & \\ oldsymbol{w}_K & & & & \\ oldsymbol{w}_K & & & & \\ oldsymbol{w}_K & & & \\ oldsymbol{w}_K & & & & \\ oldsymbol{w}_K & & \\ oldsymbol{w}_K & & & \\ oldsymbol{w}_K & & & \\ oldsymbol{w}_K & & \\ $

単調非増加性を保証した乗法更新式は限られる([Marmin+, 2023]だけ)

補助関数法に基づく乗法更新式 WかHだけをスパース化 十 本研究 の目的 両立するSNMFの提案

位置付け

本研究はノルム制約を L_1 , eta=1としたときの[Leplat+, 2021]と一致 単調非増加性を保証する乗法更新式を, [Filstroff+, 2021, Appendix C]の解法を流用し導出

2. 提案手法

・ノルム制約付きKL基準SNMFの定式化

Minimize $\mathcal{D}_{\mathrm{KL}}(\boldsymbol{X}|\boldsymbol{W}\boldsymbol{H}) + \mu \sum h_{kj} \text{ s.t. } w_{ik}, h_{kj} \geq 0, \sum_{i} w_{ik} = 1 \ \forall i, j, k$ 一般化KL擬距離 L_1 ノルム制約

- 目的関数: $\mathcal{J} = \mathcal{D}_{\mathrm{KL}}(\boldsymbol{X}|\boldsymbol{W}\boldsymbol{H}) + \mu \sum_{k,j} h_{kj}$
- Wに対するスパース正則化も一般性を失うことなく議論可能
- 補助関数法に基づく乗法更新式の導出
 - 補助変数を用いて非凸な損失関数の上界補助関数を設計

$$\mathcal{D}_{\mathrm{KL}}(oldsymbol{X}|oldsymbol{W}oldsymbol{H}) \stackrel{c}{=} \sum_{i,j} \left(-x_{ij} \log \sum_k w_{ik} h_{kj} + \sum_k w_{ik} h_{kj} \right)$$
 Jensenの不等式 δ_{ijk} :補助変数 $\leq \sum_{i,j} \left(-x_{ij} \sum_k \delta_{ijk} \log \frac{w_{ik} h_{kj}}{\delta_{ijk}} + \sum_k w_{ik} h_{kj} \right)$ $\sum_k \delta_{ijk} = 1$

補助関数 \mathcal{J}^+ に \mathcal{J} ルム制約を引き継いだ最小化問題 [Filstroff+, 2021, Appx. C]

Minimize \mathcal{J}^+ s.t. $w_{ik}, h_{kj} \geq 0, \sum_i w_{ik} = 1 \ \forall i, j, k$ $\mathcal{J}^+ \geq \mathcal{J}$ **5.1.** $w_{ik}, h_{kj} \geq 0$ $\delta_{ijk} = \frac{w_{ik}h_{kj}}{\sum_{k'}w_{ik'}h_{k'j}}$ $\mathcal{J}^{+} \stackrel{c}{=} \sum_{i,j} \left(-x_{ij} \sum_{k} \delta_{ijk} \log \frac{w_{ik} h_{kj}}{\delta_{ijk}} + \sum_{k} w_{ik} h_{kj} \right) + \mu \sum_{i,j} h_{kj}$

- この最小化問題のラグランジアンとKKT条件

$$\mathcal{L} = \mathcal{J}^+ - \sum_k \lambda_k \left(\sum_i w_{ik} - 1 \right)$$

原稿訂正: p.3 式(12)

原稿訂正:p.3 式(12) $\mathcal{L} = \mathcal{J}^{+} + \sum \lambda_{k} \left(\sum w_{ik} - 1 \right)$ (12)

 $\frac{\partial \mathcal{L}}{\partial \lambda_k} = 0 \ \forall k \quad \text{(iii)}$ - (i)より、 $w_{ik}=0$ または $\partial \mathcal{L}/\partial w_{ik}=0$ を得る $\frac{\partial \mathcal{L}}{\partial w_{ik}} = \sum_{i} \left(-x_{ij} \frac{\delta_{ijk}}{w_{ik}} + h_{kj} \right) - \lambda_k = 0 \quad \xrightarrow{\mathbf{gr}} \quad w_{ik} = \frac{\sum_{j} x_{ij} \delta_{ijk}}{\sum_{j} h_{kj} - \lambda_k}$

- (iii)及びノルム制約より $\sum_i w_{ik} = 1$ を用いて λ_k を解く

$$\sum_i w_{ik} = \sum_i rac{\sum_j x_{ij} \delta_{ijk}}{\sum_j h_{kj} - \lambda_k} = 1$$
 体的ない $\lambda_k = \sum_j h_{kj} - \sum_{i,j} x_{ij} \delta_{ijk}$

- $-w_{ik}$ から λ_k を消去 $w_{ik} = rac{\sum_j x_{ij} \delta_{ijk}}{\sum_j h_{kj} \lambda_k} = rac{\sum_j x_{ij} \delta_{ijk}}{\sum_{i,j} x_{ij} \delta_{ijk}}$
- 同様に、KKT条件を用いて $\partial \mathcal{L}/\partial h_{kj}=0$ より h_{kj} について解く

$$\frac{\partial \mathcal{L}}{\partial h_{kj}} = \sum_{j} \left(-x_{ij} \frac{\delta_{ijk}}{h_{kj}} + w_{ik} \right) + \mu = 0 \qquad \text{25} \quad h_{kj} = \frac{\sum_{j} x_{ij} \delta_{ijk}}{w_{ik} + \mu}$$

反復更新式

等式条件を w_{ik} と h_{kj} のそれぞれに代入して反復更新式を得る

$w_{ik} = w_{ik} \frac{\sum_{j} \frac{x_{ij} h_{kj}}{\sum_{k'} w_{ik'} h_{k'j}}}{\sum_{i} w_{ik} \sum_{j} \frac{x_{ij} h_{kj}}{\sum_{k'} w_{ik'} h_{k'j}}},$	$\sum_{i} x_{ij} \frac{w_{ik}}{\sum_{k'} w_{ik'} h_{k'j}}$
	$h_{kj} = h_{kj} \frac{-\kappa \cdot m \cdot n \cdot j}{\sum_{i} w_{ik} + \mu}$

- 収束パラメータや正規化処理を必要としない乗法更新式
- 補助関数法とKKT条件を厳密に満たし、<mark>理論的に単調非増加性を保証</mark>

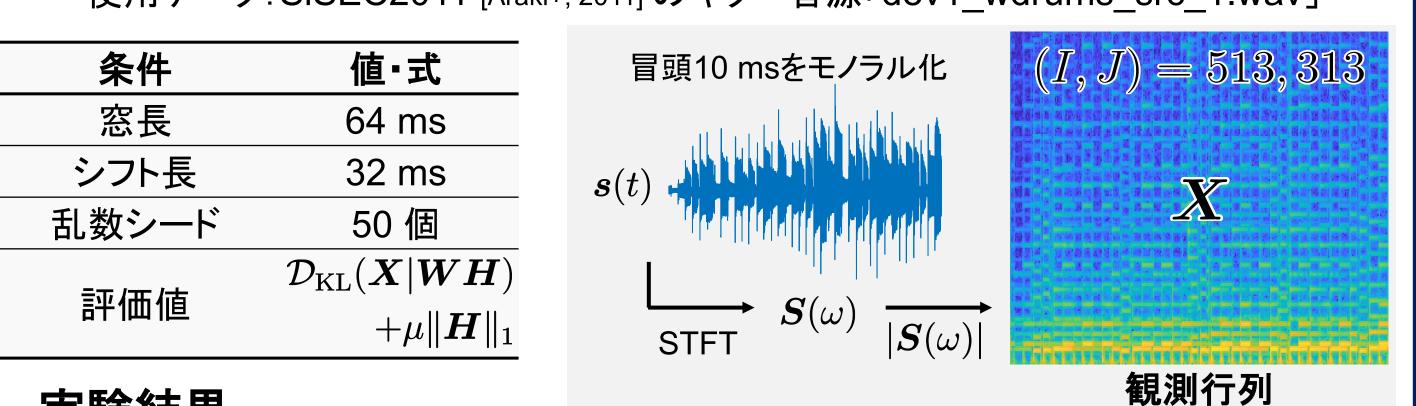
 $\mathbf{1}_{I} \in \{1\}^{I}$ 補足 β ダイバージェンスの $\beta \leq 1$ に拡張したときの反復更新式 [Marmin+, 2023] $oldsymbol{X}\odot(oldsymbol{W}oldsymbol{H})^{.(eta-2)}$ Wがラグランジュ乗数 λ に依存する $oldsymbol{W} = oldsymbol{W} \odot oldsymbol{\left(\cdot \cdot \cdot \cdot \cdot \cdot \cdot \right)}$

(**λ** を 解析的に 導けない)

3. 実験

音源データを用いた振幅スペクトログラムの近似実験

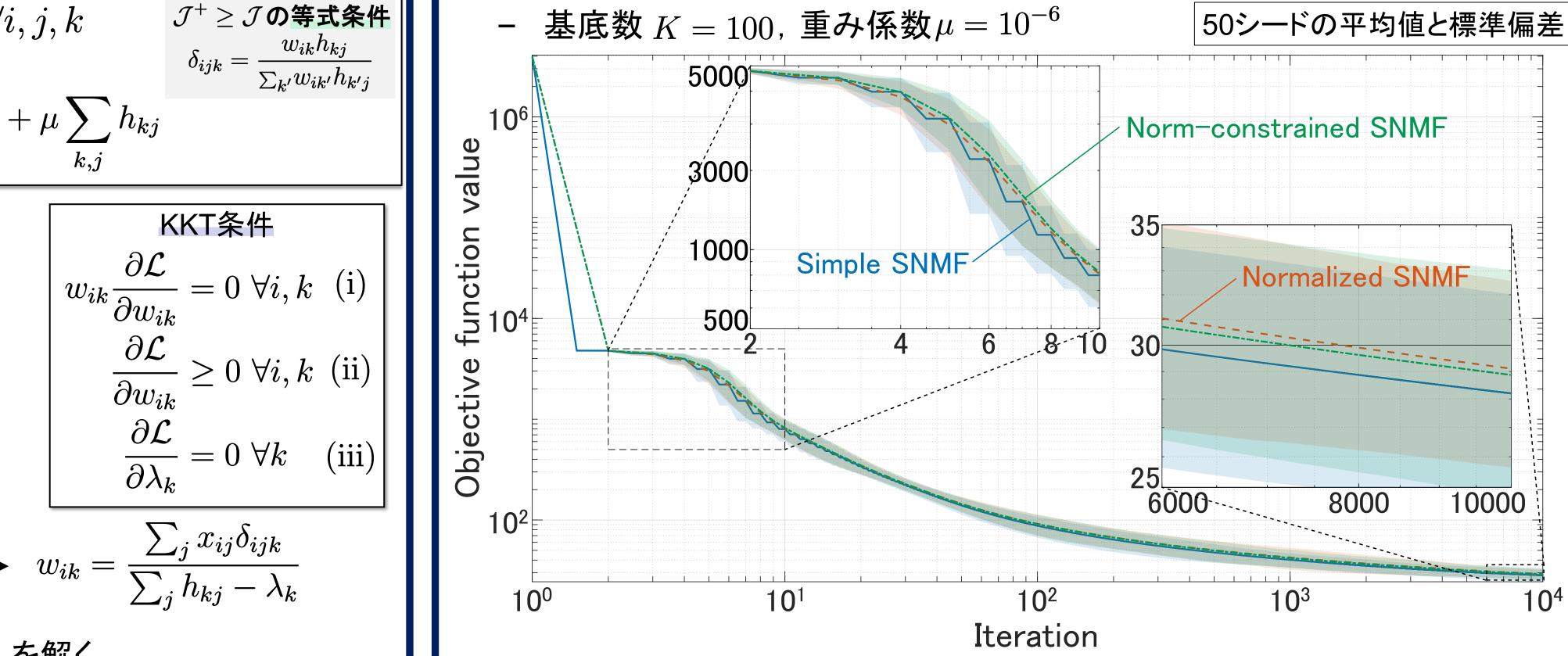
- 目的:振幅スペクトログラムの近似実験により単調非増加性を確認
- 評価方法:目的関数が一致する3手法の収束挙動を比較
- Simple SNMF [Liu+, 2004]: 更新毎に正規化するため前後の目的関数値計算
- Normalized SNMF [Le Roux+, 2015]: $\beta=1$ における反復更新式を利用 Norm-constrained SNMF:提案手法
- 使用データ: SiSEC2011 [Araki+, 2011] のギター音源「dev1_wdrums_src_1.wav」

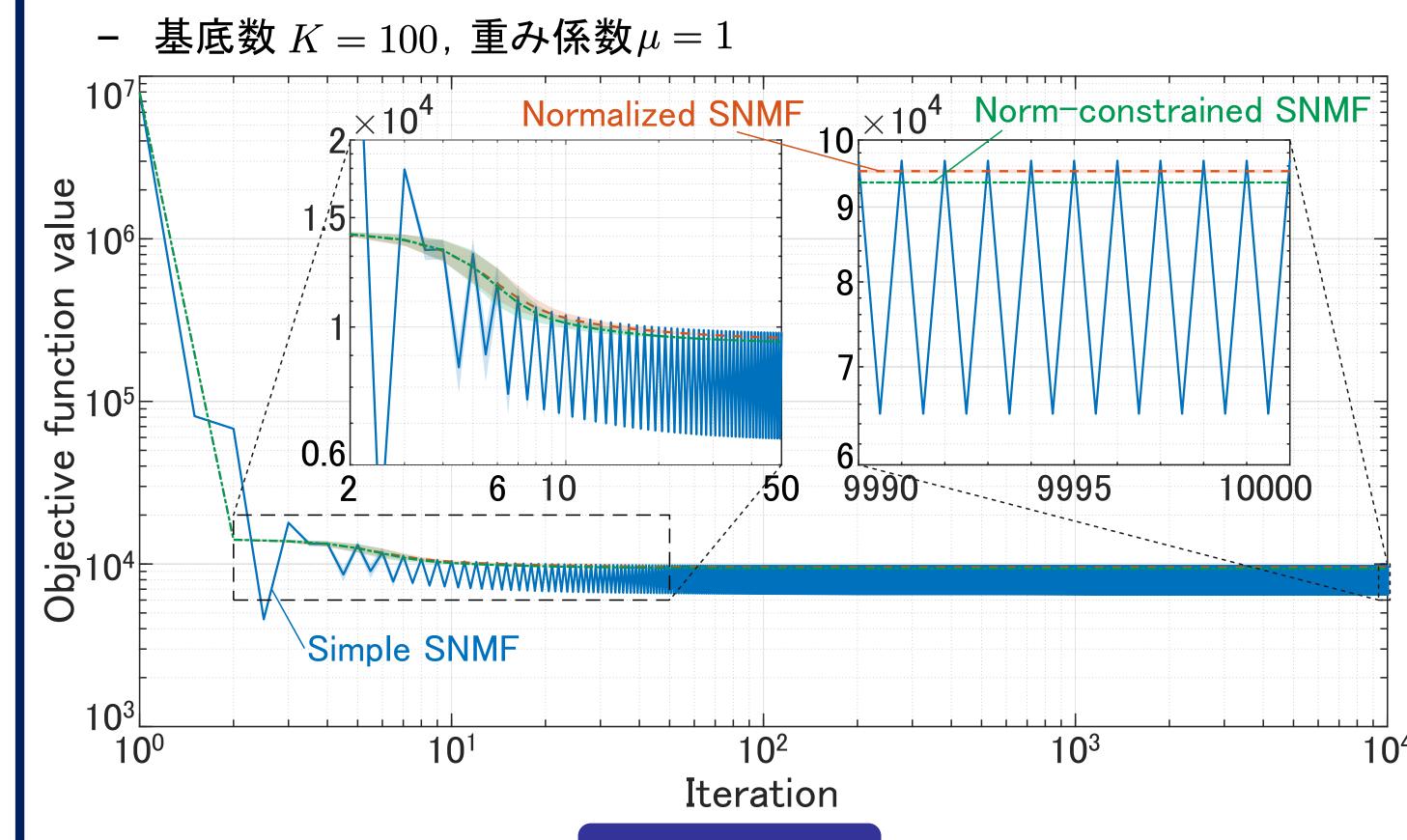


実験結果

KKT条件

 $\frac{\partial \mathcal{L}}{\partial w_{ik}} \ge 0 \ \forall i, k \ (ii)$





実験結果

基底数K及び重み係数 μ の様々な値に対して...

- ・ 収束挙動が安定しており、常に単調非増加性を維持する
- ・ 従来手法と<u>同等かより優れた目的関数値に収束</u>する