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Abstract—In live music performances, multiple microphones
are used to capture sound from individual sources for a sound
reinforcement (SR) process. However, the observed signals often
contain unwanted leakage from non-target sources, known as
bleeding sounds. Bleeding sounds in the vocal (Vo.) microphone
signal can particularly degrade SR quality. In this work, to
reduce bleeding sounds specifically in the Vo. microphone signal,
we propose a semi-blind extension of independent low-rank
matrix analysis, in which the observed signals from microphones
other than the Vo. microphone are treated as reference signals.
Experiments using impulse responses measured in an actual
live music venue demonstrate that the proposed method can
robustly estimate a demixing filter for bleeding sounds, even
under conditions with spatial aliasing.

I. INTRODUCTION

In live music performances, microphones are typically
placed close to each sound source to capture and amplify the
sound for the audience, which is known as sound reinforcement
(SR). This close-miking technique aims to isolate the target
source with high clarity. In particular, achieving high isolation
for the vocal (Vo.) source is crucial for both mixing and SR
processes. However, as illustrated in Fig. 1, many other sound
sources—such as instrument amplifiers, monitor loudspeakers,
and front-of-house (FoH) loudspeakers—are also present on
the stage. As a result, other sounds from nearby sources often
leak into the Vo. microphone, leading to unintended signal
mixing. This phenomenon, known as “bleeding sound,” can
adversely affect the SR process.

Multichannel audio source separation (MASS) techniques
have the potential to reduce the bleeding sound. In particular,
methods based on nonnegative matrix factorization (NMF) [1],
which are called time-channel NMF (TCNMF) [2]-[5], have
been investigated. TCNMF estimates frequency-wise mixing
matrices in the amplitude domain and applies a time-frequency
(TF) mask to the observed signal to suppress bleeding sounds.
However, such TF masks often introduce artificial distortion
and degrade the sound quality of the output signal.

Blind source separation (BSS) based on the statistical in-
dependence between sources [6] is also a reliable approach
for solving the MASS problem. In this paper, we focus on
a method called independent low-rank matrix analysis (IL-
RMA) [7], [8], as it is well suited to the music-related MASS
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Fig. 1: Spatial arrangement of close microphones and sound
sources. Solid and dashed arrows indicate the target and
bleeding sounds for the Vo. microphone, respectively.

problem due to its low-rank time-frequency (TF) modeling.
ILRMA estimates frequency-wise demixing matrices in the
complex domain (including both amplitude and phase), result-
ing in a linear time-invariant demixing process. This property
helps preserve sound quality and makes ILRMA suitable for
reducing bleeding sounds in music signals. However, directly
applying ILRMA to the MASS problem in live music per-
formances often fails due to severe spatial aliasing. When
microphones are spaced far apart (e.g., more than 2 m), as
shown in Fig. 1, phase differences across multiple microphones
cannot be accurately captured, leading to poor estimation of
the demixing matrices [4].

In actual live music performance setups, bleeding sounds
captured by the Vo. microphone pose a serious problem.
In contrast, bleeding sounds entering other microphones are
typically of relatively low energy and therefore have limited
impact, which will be verified in our recording experiment.
On the basis of this condition, we focus on bleeding-sound
reduction specifically for the Vo. microphone. In the proposed
method, we assume that the signals obtained from the other
microphones can serve as reference signals for each source,
and we introduce a semi-blind demixing model into ILRMA.
This approach is interpreted as an estimation of a linear time-
invariant demixing filter, which enables robust reduction of
bleeding sounds in the Vo. microphone signal. We conducted
an experiment using impulse responses measured in an actual



live music venue to validate the effectiveness of the proposed
method.

II. CONVENTIONAL BSS

A. Formulation

Let N and M be the number of sources and microphones,
respectively. The source, observed, and estimated signals at
each time-frequency slot calculated via short-time Fourier
transform (STFT) are respectively defined as
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where f € {1,2,---,F}, e {L,2,---,T}, n €

{1,2,---,N}, and m € {1,2,---, M} are the indices for
frequency bins, time frames, sources, and microphones, re-
spectively, and -T denotes the transpose.

In BSS, the observed signal is assumed to obey the following
mixing model:
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where A; € CM*¥ s a frequency-wise time-invariant mixing
matrix. In the determined observation case, i.e., M = N, BSS
can be performed by estimating the demixing matrix
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where -* and -7 denote the complex conjugate and Her-

mitian transpose, respectively. Hereafter, we only consider
the determined situation M = N. In the context of BSS,
for overdetermined situation M > N, principal component
analysis is often applied to x; for dimensionality reduction
so that M = N.

If the demixing matrix satisfies Wy = A;l, the estimated
(separated) signal can be obtained as

Yre = Wirxypy. (6)

Note that wy, can be interpreted as a linear time-invariant
demixing filter for the nth source, and the estimated signal
can be computed as the inner product between wy,, and x s,
given by

Yftn = w?nwft- @)

B. ILRMA

ILRMA [7], [8] is a powerful approach for accurately esti-
mating the demixing matrix W;. This method simultaneously
optimizes Wy and sourcewise NMF variables by maximizing
the statistical independence between sources and modeling the
power spectrogram of each estimated signal. Since the NMF-
based low-rank TF modeling is effective for music sources,
ILRMA can achieve high-quality BSS, particularly for music
mixtures.

The cost function in ILRMA is defined as
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where b, and vy, are the nonnegative elements of basis
and activation matrices B,, € RiXK and V,, € Rf *T in
NMEF, respectively, and k € {1,2,---, K} is the index of
basis vectors (i.e., the columns of B,). The rank-K matrix
B, V,, represents the power spectrogram model for the nth
estimated source and plays a key role in promoting the accurate
estimation of Wy.

The variables W, B,,, and V,, are optimized by minimizing
the cost function (8). A fast and stable update rule for W,
called iterative projection (IP) [9], and the well-known mul-
tiplicative update rules for B,, and V,, [10] are integrated in
ILRMA [7], resulting in a convergence-guaranteed optimiza-
tion algorithm:
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where e,, € {0,1}" is a one-hot vector whose nth element is
unity. All the variables must randomly be initialized before the
iteration. After convergence, the estimated signals are obtained

by (6).
III. PROPOSED METHOD

A. Motivations

In actual live music performance setups, bleeding sounds
captured by the Vo. microphone pose a more serious problem
than those captured by other microphones. In particular, drums
(Dr.) bleeding into the Vo. microphone is a major issue. As
illustrated in Fig. 2, bleeding sounds from the Dr. source tend
to be clearly audible due to three main factors: the inherently
loud sound of the drums, the typical positions of the Vo.
microphone and the Dr. source, and the high head amplifier
(HA) gain settings for the Vo. microphone. This contamination
degrades the SR quality, even though the Vo. plays the most
central role in musical performances. In contrast, bleeding
sounds entering other microphones, such as those for guitar
(Gt.) amplifiers, bass (Ba.) amplifiers, and Dr., are typically of
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Fig. 2: Typical stage setup in live music performances. The
drum set is usually positioned directly behind the Vo. mi-
crophone, and drum sounds are inherently loud. Moreover,
the HA gain for the Vo. microphone is set high, making
the microphone prone to capturing bleeding sounds from the
drums.

relatively low energy and therefore have limited impact. This
fact will be experimentally verified in Sect. IV-A.

On the basis of the above conditions, we propose a semi-
blind source separation approach that specifically focuses on
reducing bleeding sounds in the Vo. microphone. The proposed
method introduces a semi-blind demixing model into ILRMA.
Since this model dramatically reduces the number of parame-
ters to be estimated, it enables robust bleeding-sound reduction
even in the presence of spatial aliasing in the observed signals.
Furthermore, the proposed method can be interpreted as the
estimation of a linear time-invariant demixing filter for the
Vo. microphone signal using other reference microphones,
which is closely related to echo cancellation algorithms [11],
[12]. However, unlike echo cancellation, our method does not
require single-talk segments or voice activity detection, as
ILRMA estimates the demixing matrix in a fully blind manner.

B. Semi-Blind ILRMA

Let sg1 (n=1) and x4 (m = 1) be the TF components
of the Vo. source and the Vo. microphone, respectively, where
x r¢1 includes excessive bleeding sounds from the other sources
Sft2,- -+, Sf¢en. The other microphone signals @ f¢o, -+, T rim
are assumed to serve as reference channels, i.e., these sig-
nals are assumed to contain no bleeding sounds, resulting in
Tftm = Sfn Vm = n € {2,---,N}. The validity of this
assumption depends on the signal-to-noise ratios (SNRs) of
each microphone, which will be measured in Sect. IV-A.

On the basis of this assumption, a semi-blind model of the
demixing matrix, denoted by Wf € CNXM "5 given as
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By substituting (14) into the ILRMA cost function (8) and
simplifying it using the structure of W/p, we obtain the

following cost function for semi-blind ILRMA:
J = —TZlog [ e|?
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where b sk and Uy, are the nonnegatlve elements of basis and
activation matrices B € RF *K and V € RK *T | respectively.
The model spectrogram B \% represents the low-rank TF
structure of the Vo. source.

In this method, only the first row in Wf, denoted as wy, is a
spatial variable to be estimated. This vector corresponds to the
demixing filter used for reducing bleeding sounds in the Vo.
microphone signal. The low-rank TF model BV captures only
the power spectrogram of the Vo. source, and the TF models
for the other sources are not estimated. As a result, the number
of parameters in ILRMA is reduced from Wy, B,,, V,, Vf,n
to wy, B,V Vf, corresponding to a reduction by a factor of
N. This reductlon enables robust estimation of w; even under
conditions with spatial aliasing.

The convergence-guaranteed update rules for wy, B,and V
can be derived in the same manner as in ILRMA, as follows:
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IV. EXPERIMENTS
A. Impulse Response Measurement in Live Music Venue

To simulate a realistic mixing system on a live music stage,
impulse responses were recorded in an actual live music venue.
Fig. 3 shows a top-view schematic of the recording environ-
ment. A four-source and four-microphone setup was assumed,
and impulse responses were measured from each source to
each microphone. A professional SR engineer adjusted the HA
gain of each source using actual musical instruments. The HA
gains were set to 26 dB, 20 dB, 18 dB, and 0 dB for the
Vo., Gt., Ba., and Dr. sources, respectively. We prepared two
recording cases, as shown in Fig. 4: Case A, which involved
measuring impulse responses on the stage without using any
loudspeakers, and Case B, which simulated a more realistic
situation in which the FoH loudspeakers emitted a real-time
mixture of all the source signals with equal gain, and the
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Fig. 3: Top-view schematic of the microphone and loudspeaker
arrangement in a live music venue. The gray rectangle repre-
sents the stage. Two FoH loudspeakers are suspended from the
ceiling, and four monitor loudspeakers are placed on the stage
floor. Distances between each source and its corresponding
microphone are set to 0.01 m.
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Fig. 4: Two recording conditions for the impulse response
measurement: (a) all loudspeakers are muted and (b) all
loudspeakers are active. In (b), the FoH loudspeakers emit a
real-time mixture of all source signals with equal gain, while
the monitor loudspeakers emit a real-time mixture of only the
Vo., Gt., and Ba. sources, also with equal gain.

monitor loudspeakers emitted a real-time mixture of only the
Vo., Gt., and Ba. sources, also with equal gain. The output
gains of FoH and monitor loudspeakers were adjusted by
the professional SR engineer. The sounds emitted from the
FoH and monitor loudspeakers were also captured as bleeding
sounds by each microphone as illustrated in Fig. 1.

The reverberation times, calculated using the impulse re-
sponses from the Vo. source to the Vo. microphone, were
Teo = 760 ms and Tg9 = 775 ms in Case A and Case
B, respectively. Tables I and II show the sourcewise relative
energies of the bleeding sounds observed by each close micro-
phone. Since the values are normalized by the energy of the
target source observed by each close microphone, the diagonal
elements in Tables I and II are zero. From these results, we can
confirm that the Vo. microphone suffers from the high-energy
bleeding sounds. In particular, the bleeding sound from the
Dr. source exceeds 0 dB in the Vo. microphone, namely, the

TABLE 1. Observed relative bleeding-sound energy [dB] in
Case A

\ Vo. source  Gt. source  Ba. source  Dr. source
Vo. microphone 0.0 -17.3 -12.9 1.2
Gt. microphone -56.3 0.0 -25.3 -29.4
Ba. microphone -59.7 -34.8 0.0 -31.2
Dr. microphone -72.7 -44.6 -40.6 0.0

TABLE II: Observed relative bleeding-sound energy [dB] in
Case B

\ Vo. source  Gt. source  Ba. source  Dr. source
Vo. microphone 0.0 -9.8 -6.9 1.3
Gt. microphone -31.5 0.0 -16.9 -19.8
Ba. microphone -32.5 -21.5 0.0 -23.1
Dr. microphone -43.9 -34.1 -31.4 0.0

Dr. source is louder than the Vo. source itself, even though the
microphone is placed in close proximity to the Vo. source. This
can be attributed to the factors illustrated in Fig. 2. In contrast,
for the Gt., Ba., and Dr. microphones, the bleeding sounds are
not as severe. In these microphones, the target source maintains
an SNR margin of at least 25 dB and 16 dB in Case A and Case
B, respectively. This supports the validity of our assumption
that the signals observed by the Gt., Ba., and Dr. microphones
can be used as references channels.

B. Performance Analysis with Various Window Lengths in
Two-Source Mixture Case

We compared three methods: Gamma-TCNMF [5], simple
ILRMA [7], and the proposed semi-blind ILRMA. As the
evaluation criterion, we used the source-to-distortion ratio
(SDR), calculated using bss_eval_sources [13]. SDR
reflects the overall separation quality, taking into account
both the suppression of bleeding sounds and the absence of
artificial distortions. We calculated the SDR of the observed
and estimated signals for the Vo. source, and the difference of
these values was obtained as an SDR improvement.

As the dry source signals, we used three songs (nos. 022,
023, and 040 in the test dataset) randomly selected from the
DSDI00 dataset [14]. This dataset consists of full-length music
tracks along with their isolated Vo., Ba., Dr., and other signals
(Gt. in the case of the three selected songs). For each source,
a 20-s segment was extracted from each track and used as the
dry source signal.

Since MASS algorithms based on (4) or (6) typically depend
on the window length used in the STFT, in this subsection,
we evaluate the performance of each method with various
window lengths. To clearly observe the performance changes
with respect to window length, we simplified the bleeding-
sound reduction task, namely, only the Vo. and Dr. sources
and microphones were used for producing the two-source and
two-channel observed signals. In Case B, all the monitor (and
FoH) loudspeakers were active even though only the Vo. and
Dr. sources existed on the stage.

The hyperparameters in Gamma-TCNMF were experimen-
tally tuned using the same observed signals to obtain optimal
performance. The best values of (k,6,«) were found to be



TABLE III: Experimental conditions in two-source mixture
case

Condition
93/186/372/743/1115/
1486/1858/2229 ms

Parameter
Window length in STFT

Window function in STFT Blackman window
Window shift length in STFT 1/8 of window length
Number of iterations 100
Initial values of off-diagonal elements ~ Uniform random values
in mixing matrix for Gamma-TCNMF in range (0,0.2)
Initial values of activation matrix for ~ Uniform random values
Gamma-TCNMF in range (0,1)
Number of basis vectors for ILRMA K =10
and semi-blind ILRMA -
Initial values of demixing matrix for
ILRMA and semi-blind ILRMA
Initial values of basis and activation
matrices for ILRMA and semi-blind
ILRMA

Identity matrix

Uniform random values
in range (0,1)

(1.1,21.5,0.00077) for Case A and (2,1,0.0001) for Case
B, where x and 6 are the shape and scale parameters of
the gamma distribution, and « is the normalization parameter
(see [5]). Other experimental conditions are summarized in
Table III. Since all methods require initialization and random
values were used as initial values, we ran each method with
30 different pseudorandom seeds and report the average SDR
improvement over these 30 trials.

Fig. 5 shows the average SDR improvements of the Vo.
source with respect to various window lengths. Simple ILRMA
fails to reduce bleeding sounds under longer window condi-
tions, whereas the proposed semi-blind ILRMA consistently
achieves significantly better performance. This stable and
robust improvement can be attributed to the introduction of the
model (14), which reduces the number of parameters to be es-
timated. Gamma-TCNMF is also effective for bleeding-sound
reduction, particularly in Case B, but its optimal performance
remains inferior to that of the proposed method.

C. Performance Comparison in Four-Source Mixture Case

In this subsection, we compare the performance of each
method using the four-source and four-channel observed sig-
nals. The window length was set to the optimal value identified
in Fig. 5, as summarized in Table IV. All other experimental
conditions were the same as those described in Sect. IV-B.

Fig. 6 shows violin plots of SDR improvements, where
each violin includes 90 results (30 trials for each of three
songs). In Fig. 6 (a), the results for Gamma-TCNMEF exhibit no
variation with respect to parameter initialization, as previously
analyzed in [5], and the three layers visible in the violin plot
correspond to the three different songs. However, intriguingly,
this initialization robustness is clearly lost in Fig. 6 (b). In
Case B, where the FoH and monitor loudspeakers were active,
the sounds emitted from these virtual sources appear to disrupt
the initialization robustness of Gamma-TCNMEF. In both cases,
the proposed semi-blind ILRMA clearly outperforms the other
methods and achieves significant bleeding-sound reduction.
Nonetheless, the performance appears to depend on the choice
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Fig. 5: Average SDR improvements of the Vo. source in two-
source mixture case for (a) Case A and (b) Case B.

TABLE IV: Best window lengths [ms] for each method

Case Gamma-TCNMF ILRMA  Semi-blind ILRMA
Case A 186 186 1115
Case B 1858 743 2229

of dry source, indicating that further investigation is required
to achieve consistently high performance.

V. CONCLUSION

In this paper, we proposed an effective bleeding-sound
reduction approach for the Vo. microphone. The proposed
method exploits the assumption that signals obtained by other
microphones on the stage can serve as reference signals
for the non-target sources. On the basis of this assumption,
we introduced a semi-blind demixing model into ILRMA, a
well-established BSS framework. Experiments using impulse
responses measured in an actual live music venue demonstrated
that the proposed method can accurately estimate a demixing
filter for bleeding-sound reduction, even under spatial aliasing
conditions.
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