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Abstract—In this paper, we propose a novel nonnegative matrix
factorization (NMF) using Dirichlet distribution prior. NMF
is a low-rank approximation of a nonnegative matrix and is
widely used in various tasks in a signal processing field. Many
variants of regularized NMF have been proposed, and sparse
and smooth regularizations particularly play an important role
in the history of NMF. The proposed NMF utilizes Dirichlet-
distribution-based regularization, which enables us to impose
either sparseness or smoothness to decomposed matrices in a
single unified framework. The effectiveness of the proposed
method is demonstrated through numerical experiments, includ-
ing a decomposition accuracy evaluation and a comparison with
conventional sparsity-regularized NMF in the task of howling
suppression. The results confirm that the proposed approach
achieves improved performance in both decomposition quality
and practical signal processing applications.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] is an algorithm
that approximates a nonnegative observed matrix X by the
product of two nonnegative matrices W and H under a low-
rank constraint. NMF has widely been utilized in various
signal processing fields including audio signal processing [2],
[3], image and computer vision signal processing [4], [5],
and biomedical signal processing [6], [7]. Moreover, many
approaches have been proposed to incorporate prior models
into the factorized matrices W and/or H in order to guide the
optimization toward better solutions. Most of these methods
are formulated as a regularized optimization problem. Rep-
resentative examples include the imposition of sparsity [8],
[9], smoothness [10], non-smoothness [11], orthogonality [12],
[13], and minimum-volume constraints on the convex hull
spanned by the basis vectors [14]. Such methods can be
interpreted as maximum a posteriori (MAP) estimation, where
specific prior distributions are assumed for the variables.

In this paper, we propose a novel NMF technique that
employs a Dirichlet distribution as a prior, unifying both
sparsity and smoothness (denseness) regularization within a
single framework. By leveraging the properties of the Dirichlet
distribution, we enforce each column or row vector of the
target variable matrix to sum to unity, thereby imposing a
norm constraint. This effectively resolves the scale indeter-
minacy problem, which often arises in regularized NMF. In
addition, we can flexibly induce either sparsity or smoothness
by adjusting the hyperparameters (concentration parameters)
of the Dirichlet distribution prior.
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II. CONVENTIONAL METHODS

A. Formulation of NMF

NMF approximates a nonnegative observed matrix X ∈
RI×J

≥0 by the product of a nonnegative basis matrix W ∈
RI×K

≥0 and a nonnegative coefficient matrix H ∈ RK×J
≥0 , i.e.,

X ≈ WH , where I and J denote the numbers of rows and
columns of X , respectively, and K is the number of columns
of W (i.e., the number of basis vectors). Typically, K ≪ I, J
if the goal is low-rank approximation of X .

The estimation of W and H is formulated as:

Minimize
W ,H

D(X|WH) s.t. wik, hkj ≥ 0 ∀i, j, k, (1)

where wik and hkj are the elements of W and H , respectively,
and i = 1, 2, · · · , I, j = 1, 2, · · · , J, k = 1, 2, · · · ,K are
their row/column indices. We denote the kth column of W
by wk (called a basis vector), and the kth row of H by hT

k ,
where ·T denotes the transpose.

The divergence function D(X|WH) measures the similar-
ity between X and WH . In this work, we use the generalized
Kullback–Leibler (KL) divergence defined by

D(X|WH) =∑
i,j

(
xij log

xij∑
k wikhkj

− xij +
∑
k

wikhkj

)
, (2)

where xij denotes each element of X . A well-known approach
to NMF with the generalized KL divergence is the multi-
plicative update rule [1] based on the so-called majorization-
minimization (MM) algorithm [15].

B. Scale Indeterminacy in Regularized NMF

Suppose that the basis matrix W is assumed to follow a
prior distribution p(W ). In that case, the MAP estimation of
NMF can be written as:

Minimize
W ,H

D(X|WH) +R(W ) s.t. wik, hkj ≥ 0 ∀i, j, k,

(3)

where R(W ) = − log p(W ) is a regularization term derived
from the prior distribution p(W ).

If R(W ) depends on the scale of W , one can make R(W )
arbitrarily small by scaling W by some constant factor and
multiplying H by the reciprocal of that factor, leaving WH
unchanged. Consequently, D(X|WH) remains the same,
rendering the regularization term meaningless [9], [13]. This
problem occurs when the regularization is imposed on either



W or H alone, originating from the scale indeterminacy
between W and H . Hence, it is necessary to design the
objective function such that the regularization term is scale-
invariant (e.g., [13]), or to impose a norm constraint like
∥wk∥ = 1 ∀k (e.g., [9], [14], [16]).

III. PROPOSED METHOD

A. Motivation for Dirichlet Priors in NMF

The Dirichlet distribution is defined for vectors on a standard
simplex (i.e., nonnegative vectors whose elements sum to 1)
and can be interpreted as a probability density function (p.d.f.)
on that simplex. Let z = [z1, · · · , zI ]T ∈ RI

≥0 be a random
vector following the Dirichlet distribution, such that

∑
i zi =

1. The p.d.f. of the Dirichlet distribution is defined as

z ∼ p(z;α) =
1

B(α)

∏
i

zαi−1
i , (4)

where α = [α1, · · · , αI ]
T ∈ RI

>0 is a concentration parameter
vector, and B(α) = [

∏
i Γ(αi)]/Γ(

∑
i αi) is the multinomial

beta function. Fig. 1 shows examples of the p.d.f. of the
Dirichlet distribution when I = 3, illustrated on the standard
two-dimensional simplex (triangle). The three vertices of the
triangle correspond to z = [1, 0, 0]T, [0, 1, 0]T, and [0, 0, 1]T,
respectively. The vector α controls how strongly the density
concentrates near each vertex. If αi < 1, the density tends
to concentrate near the ith vertex (i.e., generating“ one-hot”
or sparse vectors more frequently). Conversely, if αi > 1,
the density tends to generate smoother (dense) vectors whose
elements are more evenly distributed. In the special case
αi = 1 ∀i, the distribution is uniform on the simplex.

Using these properties of the Dirichlet distribution, we can
design an NMF approach in which each basis vector wk or
coefficient vector hk follows a Dirichlet prior, thereby inducing
either sparsity or smoothness depending on how we set the
concentration parameters α. In this paper, we call this method
“Dirichlet NMF.” The proposed method has the following
advantages:

• The norm constraint implied by the Dirichlet prior inher-
ently resolves the scale indeterminacy problem discussed
in Section 2.2.

• By adjusting the concentration parameters α, one can
continuously transition between sparse and smooth priors
in a unified framework.

In this paper, we focus on Dirichlet priors for the basis vectors
wk as a concrete example. However, the same idea can be
applied without loss of generality to hk.

B. Objective Function of NMF with Dirichlet Priors

Assume that each of the K basis vectors w1, · · · ,wK

follows an independent Dirichlet distribution p(w;αk):

wk ∼ p(w;αk) ∀k, (5)

W ∼ p(W ) =
∏
k

p(w;αk)|w=wk
. (6)

(a) (b)

(c) (d)

Fig. 1. Dirichlet distributions when I = 3, where the support triangle
indicates the standard (I − 1)-dimensional simplex.

By calculating the negative log-likelihood function, we can
obtain the regularization term R(W ) as

− log p(W ) = − log
∏
k

p(w;αk)|w=wk

=
∑
k

[
logB(α)−

∑
i

(αik − 1) logwik

]
c
=
∑
i,k

(αik − 1) logw−1
ik

≡ R(W ), (7)

where αik denotes the ith element of αk and c
= denotes

equality up to a constant. Thus, the MAP estimation with
Dirichlet priors (Dirichlet NMF) is formulated as:

Minimize
W ,H

D(X|WH) +
∑
i,k

(αik − 1) logw−1
ik

s.t. wik, hkj ≥ 0 ∀i, j, k,
∑
i

wik = 1 ∀k, (8)

where the new constraints impose both nonnegativity of the
variables and a norm constraint on each wk. Throughout this
paper, we let J = D(X|WH)+R(W ) denote the objective
function of Dirichlet NMF.

C. Derivation of Optimization Algorithm

In the NMF literature, multiplicative update rules based
on the MM algorithm are commonly employed [1]. This
approach proceeds as follows: (a) for the current point of the
variable, construct a majorization function satisfying certain
requirements, (b) solve for the stationary point of this ma-
jorization function in closed form, and update the variable
for the next iteration. This guarantees the monotonic non-
increase of the objective function at each iteration. We also
apply this method to the optimization problem in Dirichlet
NMF. However, unlike standard NMF, we must handle both
nonnegativity and the additional norm constraint on wk. To



cope with this problem, we design a majorization function for
the objective and then solve a constrained minimization sub-
problem using the method of Lagrange multipliers and the
Karush–Kuhn–Tucker (KKT) conditions1.

First, we apply Jensen’s inequality to the generalized KL
divergence:

D(X|WH)

c
=
∑
i,j

(
−xij log

∑
k

wikhkj +
∑
k

wikhkj

)

≤
∑
i,j

(
−xij

∑
k

δijk log
wikhkj

δijk
+
∑
k

wikhkj

)
, (9)

where δijk > 0 is an auxiliary variable that satisfies
∑

k δijk =
1. Using the inequality (9), we can design a majorization
function J + ≥ J as follows:

J + c
=
∑
i,j

(
−xij

∑
k

δijk log
wikhkj

δijk
+
∑
k

wikhkj

)
+
∑
i,k

(αik − 1) logw−1
ik . (10)

The equality J + = J holds if and only if

δijk =
wikhkj∑
k′ wik′hk′j

. (11)

We consider the following constrained minimization prob-
lem of the majorization function:

Minimize
W ,H,∆

J +

s.t. wik, hkj ≥ 0 ∀i, j, k,
∑
i

wik = 1 ∀k, (12)

where ∆ denotes the set of δijk ∀i, j, k. The Lagrangian for
this optimization is given by

L = J + −
∑
k

λk

(∑
i

wik − 1

)
−
∑
i,k

µikwik, (13)

where λk and µik are the Lagrange multipliers for the equality
(norm) and inequality (nonnegative) constraints, respectively.
The KKT conditions are

∂L
∂wik

= 0 ∀i, k, (14)

∂L
∂λk

= 0 ∀k, (15)

µik ≥ 0 ∀i, k, (16)
∂L
∂µik

≤ 0 ∀i, k, (17)

µik
∂L
∂µik

= 0 ∀i, k. (18)

1In [16], a similar constrained optimization for a majorization function is
considered. However, the method in [16] treats more generalized formulation
and utilizes Newton–Raphson method to calculate the Lagrangian multiplier.

From the derivation of L w.r.t. each variable, we obtain

∂L
∂wik

=
∂J +

∂wik
− λk − µik, (19)

∂L
∂λk

= −

(∑
i

wik − 1

)
, (20)

∂L
∂µik

= −wik. (21)

Substituting (21) into (17) and (18) shows that the minimizer
must satisfy

wik ≥ 0 ∀i, k, (22)
µikwik = 0 ∀i, k. (23)

From (23), the minimizer of L satisfies either µik = 0 or
wik = 0. Let ŵik be the unconstrained minimizer of L that
satisfies (14). If ŵik satisfies the nonnegativity condition (22),
then µik = 0 and wik = ŵik satisfy all of the KKT conditions
and coincide with the constrained minimizer of L. In contrast,
if ŵik does not satisfy (22), then wik = 0 becomes the
constrained minimizer. Thus, the minimizer of wik can be
written as

wik =

{
ŵik (ŵik ≥ 0)

0 (otherwise)
. (24)

Therefore, the optimal solution for W in the optimization
problem (12) can be obtained by considering only the elements
that satisfy ŵik ≥ 0. Hereafter, for each k, we define the the
set of indices i that satisfy ŵik ≥ 0 as Ik.

Next, we solve for ŵik ∀i ∈ Ik. Setting ∂L/∂wik = 0, we
obtain∑

j

(
−xij

δijk
ŵik

+ hkj

)
− (αik − 1)

1

ŵik
− λk − µik = 0.

(25)

Noting that µik = 0 for all i ∈ Ik due to the condition (23),
ŵik can be obtained by rearranging (25) as follows:

ŵik =

∑
j xijδijk + αik − 1∑

j hkj − λk
∀i ∈ Ik, ∀k. (26)

To eliminate the Lagrange multiplier λk in (26), we consider
the summation of the minimizer wik over i, which yields∑

i

wik =
∑
i∈Ik

∑
j xijδijk + αik − 1∑

j hkj − λk
∀k. (27)

By substituting (27) into the norm constraint condition∑
i wik = 1 ∀k derived from (15) and (20), we obtain the

following equation:

∑
j

hkj − λk =
∑
i∈Ik

∑
j

xijδijk + αik − 1

 ∀k. (28)

Since the left-hand side of (28) coincides with the denominator
of (26), the Lagrange multiplier λk can be eliminated by



substituting (28) into (26), and we finally obtain the solution
of ŵik as

ŵik =

∑
j xijδijk + αik − 1∑

i∈Ik

(∑
j xijδijk + αik − 1

) ∀i ∈ Ik, ∀k. (29)

The constrained minimizer of the majorization function J +

is given by (24) and (29). Furthermore, by substituting the
equality condition of the auxiliary variable δijk, (11), into (29),
we can rewrite the minimizer (29) as follows:

ŵik =
wik

∑
j

xij∑
k′ wik′hk′j

hkj + αik − 1∑
i∈Ik

(
wik

∑
j

xij∑
k′ wik′hk′j

hkj + αik − 1
)

∀i ∈ Ik, ∀k. (30)

From (24) and (30), it can be confirmed that the iterative update
rule inherently satisfies the nonnegative and norm constraints
on wk.

The optimization algorithm for Dirichlet NMF proceeds by:
1) initializing W and H with positive random values with

column normalization for W ,
2) updating W using (24) and (30),
3) updating H by the well-known multiplicative update

rule as in [1],
repeating until convergence2. Since the update rules for W
and H are based on the MM algorithm, the monotonic non-
increase of the objective function is theoretically guaranteed
at each iteration.

IV. NUMERICAL EXPERIMENT

A. Experimental Conditions

In this experiment, we numerically confirmed that the basis
vectors in Dirichlet NMF are guided toward either sparse
or smooth structures according to the specified concentration
parameters. We prepared a 5×3 basis matrix and a 3×10
coefficient matrix, as illustrated in Fig. 2 (a). Two of the
basis vectors were set to “one-hot” (sparse) vectors, and the
remaining one was set to a smooth (uniform) vector. The
elements of coefficient matrix were generated from a uniform
distribution in the range (0, 1). An observed 5×10 matrix X
was defined as the product of these matrices.

We compared two algorithms: simple NMF without regular-
ization (but with normalization of each column of W at every
iteration) and the proposed Dirichlet NMF. In both algorithms,
the number of bases was set to K = 3, which coincides with
the rank of X , and the total number of iterations was 100.
In each iteration of simple NMF, each column of W was
normalized, and the scaling was performed to H so that WH
remains unchanged. For Dirichlet NMF, we set the parameters
of the Dirichlet priors to α1 = α2 = [0.5, 0.5, 0.5, 0.5, 0.5]T

and α3 = [1.5, 1.5, 1.5, 1.5, 1.5]T. These parameter settings
induce the sparsity into w1 and w2 and the smoothness into
w3 during the optimization.

2A MATLAB implementation of the proposed method is available at https:
//github.com/d-kitamura/dirichletNmf.

B. Results

The estimated W and H obtained by simple NMF and
Dirichlet NMF are shown in Figs. 2 (b) and (c), respectively.
Simple NMF fails to recover the oracle basis and coefficient
matrices accurately. In contrast, Dirichlet NMF successfully
reconstructs both W and H in a nearly perfect manner.

The convergence behavior of the objective function in
Dirichlet NMF is illustrated in Fig. 3. The objective func-
tion value decreases monotonically. Furthermore, it converges
within about 20 iterations in this example. Similar results were
obtained in additional experiments with different random seeds
for the coefficient and initial matrices.

V. APPLICATION TO HOWLING SUPPRESSION

A. Principle of Howling Suppression Based on NMF

As a potential application of the proposed method, howling
suppression can be considered, which has been studied using
adaptive notch filters (e.g., [17], [18]). However, it is difficult
for adaptive notch filters to track howling when it occurs at
multiple frequencies simultaneously. Therefore, in this section,
we conduct experiments on howling suppression using NMF.

Howling sounds appear as stationary signals consisting of
a single frequency component and, therefore, exhibit a sparse
structure along the frequency axis in a spectrogram. As shown
in Fig. 4, the spectral patterns of howling sounds can be
estimated by introducing sparsity regularization into a subset
of basis vectors. Then, howling suppression can be achieved
by reconstructing the spectrogram using only the components
not associated with the howling sounds. However, the spectral
patterns of howling sounds need to be estimated in the intended
basis vectors in advance, and thus appropriate regularization
to guide this separation plays a critical role.

We compared two approaches: NMF with L1-norm-based
sparsity regularization [8] (referred to as L1-sparse NMF) and
Dirichlet NMF. Dirichlet NMF is expected not only to apply
sparsity regularization to specific basis vectors, but also to
introduce smoothness regularization to the remaining ones,
thereby encouraging the spectral patterns of howling sounds
to be reliably estimated in the intended basis vectors.

We constructed a Wiener filter using the model spectrogram
after howling suppression, denoted as X̂ ∈ RI×J

≥0 in Fig. 4.
Let X(c) ∈ CI×J and X ∈ RI×J

≥0 denote the complex and
amplitude spectrograms of the observed signal, respectively.
After estimating a low-rank approximation X ≈ WH , we
define X̂ ∈ RI×J

≥0 as the model spectrogram reconstructed
using only the components excluding those corresponding to
howling sounds. The howling suppression is then given by

X̂(c) =
X̂

WH
⊙X(c), (31)

where X̂(c) denotes the complex spectrogram after howl-
ing suppression. The fraction and the operator ⊙ represent
element-wise division and multiplication, respectively.



(a)
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Fig. 2. (a) Oracle basis and coefficient matrices that produce the observed matrix X , (b) estimates of W and H by simple NMF without regularization, and
(c) estimates by the proposed Dirichlet NMF.
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Fig. 3. Convergence behavior of Dirichlet NMF.

B. Conditions

We used three speech signals—BASIC5000_0024.wav,
BASIC5000_0035.wav, and BASIC5000_0465.wav—
randomly selected from the JVS corpus [19]. To simulate
multiple howling sounds, we added two sinusoidal waves with
frequencies of (1 kHz, 2 kHz), (2 kHz, 4 kHz), and (4 kHz,
8 kHz) to each of the three speech signals, respectively. The
first howling component was active during the 2–4 s segment,
and the second during the 3–5 s segment. The maximum
amplitude of each howling signal was set to 20% of the
maximum amplitude of the corresponding clean speech signal.
To simulate smooth onsets and offsets, the added sinusoids
were multiplied by a Hann window.

In both L1-sparse NMF and Dirichlet NMF, the first and
second basis vectors were regularized to be sparse so that the
spectral patterns of the howling sounds would be captured by
w1 and w2. For L1-sparse NMF, the number of basis vectors
K and the regularization weight β for the L1 norm were varied

within the ranges [5, J ] for K and [10−4, 50] for β. We present
results for three representative parameter settings, including
the one that achieved the best performance. In the case of
Dirichlet NMF, two hyperparameters were introduced: one for
the sparse basis vectors, defined as αhowl = [α1, α2]

T, and
another for the remaining basis vectors, defined as αother =
[α3, · · · , αK ]T. We tuned K and αhowl under the constraints
α1 = α2 and α3 = · · · = αK = 1.3, with the following
search ranges: [5, J ] for K and [−10, 1] for the elements of
αhowl. As with L1-sparse NMF, we report the results for three
representative parameter settings in Dirichlet NMF.

Note that, in principle, the concentration parameter α must
be strictly positive. However, we empirically found that al-
lowing negative values in αhowl further enhanced the sparsity
effect without causing optimization issues. In fact, the update
algorithm (30) successfully minimized the cost function while
satisfying the constraints for the variables. For this reason, we
included negative values in the tuning range of αhowl.

As the evaluation metric, we used the source-to-distortion
ratio (SDR) [20]. In this experiment, the SDR reflects the
overall quality of howling suppression, taking into account
both the degree of howling reduction and the absence of
artificial distortions in the speech signal.

C. Results

Fig. 5 shows violin plots of the SDR values averaged over
the three observed signals. For each method and each observed
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Fig. 4. Howling suppression framework based on NMF with sparsity
regularization.

signal, 50 trials were conducted with different random initial-
izations of W and H . Under the optimal conditions for each
method, the average SDRs were 0.80 dB for L1-sparse NMF
and 8.83 dB for Dirichlet NMF, confirming the effectiveness
of the proposed method in suppressing howling. In L1-sparse
NMF, the howling spectra were not adequately captured by
the sparsity-induced basis vectors, resulting in degraded SDR
performance. Intriguingly, the best performance in Dirichlet
NMF was obtained with a negative hyperparameter setting
for αhowl. Although such a setting no longer corresponds to
the MAP estimation based on the Dirichlet distribution, the
enhanced sparsity induced by this generalized Dirichlet NMF
framework significantly improves the performance of NMF-
based howling suppression.

VI. CONCLUSION

We presented a new NMF method incorporating a Dirichlet
distribution prior. The proposed method allows for inducing
either sparse or smooth structures in the factorized matrices
by adjusting the concentration parameters, while avoiding the
scale indeterminacy issue commonly encountered in regular-
ized NMF. We also derived update rules based on the MM
algorithm. Both numerical experiments and a practical appli-
cation to howling suppression demonstrated the effectiveness
of the proposed method.
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