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Abstract

Timbre conversion of musical instrument sounds utilizing
deep neural networks (DNNs) has been the subject of exten-
sive research and continues to elicit significant interest in the
development of more advanced techniques. We aim to pro-
pose a novel algorithm for timbre conversion utilizing a vari-
ational autoencoder. However, this system must possess the
capability of predicting the amplitude spectrogram from the
mel-frequency cepstrum coefficient (MFCC) and loudness.
The present research aims to build a DNN-based decoder that
utilizes the MFCC and loudness as inputs to predict the am-
plitude spectrogram. Experiments using a musical instrument
sound dataset indicate that a decoder incorporating bidirec-
tional long short-term memory yields accurate predictions of
amplitude spectrograms.

1. Introduction

The generation of musical instrument sounds and the con-
version of timbre have been the focus of extensive research
in recent years. Various techniques based on deep neural net-
works (DNNs) have been proposed to tackle this problem.
For example, differentiable digital signal processing [1] is a
synthesizer of musical instrument sounds, which utilizes mul-
tiple sinusoidal waves and filtered noise, whose parameters
are generated by pre-trained DNNs. Another approach in-
volves the use of a variational autoencoder (VAE) [2] to gen-
erate musical instrument sounds [3, 4, 5]. In this method,
VAE is used to extract disentangled latent features of pitch
and timbre.

Similar to the aforementioned approach, this paper also
focuses on a VAE-based system for the timbre conversion
of musical instruments. Currently, we are in the process of
developing a new timbre conversion system, as depicted in
Fig. 1. In this system, we propose to incorporate the three fun-
damental elements of musical instrument sounds: pitch, tim-
bre, and volume. To represent these features, we employ tra-
ditional, well-established features: note number as a parame-
ter of pitch, mel-frequency cepstrum coefficient (MFCC) [6]
as a parameter of timbre, and loudness as a parameter of vol-

Figure 1: Process flow of proposed timbre conversion system

ume. The timbre conversion of an input sound is achieved by
modifying only the MFCC based on the pre-trained VAE. We
anticipate that the proposed system will enable the interpola-
tion of timbre across multiple types of musical instruments,
thus contributing to the advancement of new art and music.

The proposed system (Fig. 1) requires a decoding process
that involves the calculation of an amplitude spectrogram
from the pitch, manipulated timbre, and volume. This de-
coder cannot be realized in an analytical manner. To solve
this problem, in this paper, we propose the utilization of three
DNN architectures and evaluate the suitable DNN for predict-
ing amplitude spectrograms.

2. Proposed system and its DNN decoder

2.1 Overview of proposed system

As depicted in Fig. 1, the proposed system first computes
an amplitude spectrogram of the input sound via a short-time
Fourier transform (STFT). Subsequently, the pitch, MFCC,
and loudness are extracted. While the pitch can be ex-
tracted using various techniques, including DNN-based meth-
ods such as [7], the MFCC and loudness are obtained through
deterministic calculations. In the proposed system, it is as-
sumed that the MFCC is a reliable feature that represents
the timbre of the sound and is disentangled from the pitch
and volume. To train the timbre-embedded latent space, the
MFCCs of various from multiple musical instruments are
input into the VAE. This training enables us to manipulate
only the timbre of the sounds after the training of the en-
tire proposed system. Finally, the pitch, manipulated MFCC,



Figure 2: Training process flow of proposed DNN-based tim-
bre decoder

and loudness are decoded to the amplitude spectrogram, and
the waveform of the generated sound is obtained via inverse
STFT and phase recovery techniques.

2.2 Motivations and contributions of this paper

In the proposed system, an output of the VAE (generated
MFCC) must be decoded into an amplitude spectrogram us-
ing pitch and loudness. Since MFCC is a dimensionality-
reduced feature, this decoding cannot be achieved through
linear operations or analytical manners. To circumvent this
issue, we employ a DNN as the decoder of the proposed sys-
tem, namely, the DNN decoder predicts an amplitude spectro-
gram of synthesized sound from the inputted pitch, MFCC,
and loudness. In this paper, we investigate a suitable archi-
tecture for this DNN decoder and evaluate its accuracy. The
evaluation of the entire system of Fig. 1 is our future work.

The procedure for training the DNN decoder is depicted
in Fig. 2. As the decoder, multiple DNNs are independently
prepared and trained for each sound note number (from C3 to
B5). Thus, the estimated pitch is utilized to select the pitch-
specific DNN, and MFCC and loudness are inputted into the
selected one. Thanks to this pitchwise model training, a gen-
eralization capability for pitch is not required for each DNN,
resulting in a high prediction performance.

In this paper, we conduct experimental investigations to de-
termine the suitable DNN architecture for the DNN decoder.
The performance of multilayer perception (MLP), bidirec-
tional gated recurrent unit (BiGRU) [8], and bidirectional
long short-term memory (BiLSTM) [9] are compared. Bi-
GRU and BiLSTM are referred to as bidirectional recurrent
neural networks (BiRNNs) [10], which can effectively cap-
ture latent structures of time-series data.

2.3 Architecture of DNN decoders

Let Y ∈ RI×J
≥0 and yij be the amplitude spectrogram of

an input sound and its element at frequency i and time j, re-
spectively, as obtained by STFT. The loudness of this signal is
computed by vj =

∑I
i=1(yij+ε), where ε represents a small

value to avoid zero-division. The amplitude spectrogram is

Figure 3: Architecture of BiRNN used as DNN decoder

normalized using the loudness as yij = yij/vj . Then, the
MFCC is computed with the normalized power spectrogram
P ∈ RI×J

≥0 , whose element is y2ij . This MFCC is denoted as
C ∈ RK×J , where K is the order of MFCC, which is equal
to the number of filters in the bandpass filter called the mel
filter bank used in the MFCC computation. The input data of
the DNN decoder is defined as

X =

[
C
vT

]
∈ R(K+1)×J , (1)

where v = [v1, v2, · · · , vJ ]T ∈ RJ .
For the training of MLP, we vectorize X and input the

vector into the first layer. The label (reference of the DNN
prediction) is defined as y ∈ RIJ

≥0, a vectorized version of
the original amplitude spectrogram Y . This MLP consists of
three fully connected hidden layers with 1024–512–512 di-
mensions, and each hidden layer has a rectified linear unit as
the activation function.

The network architecture of BiGRU or BiLSTM is illus-
trated in Fig. 3. The column vectors of X , denoted as
xj ∈ RK+1, are input into the first BiRNN layer. This
bidirectional computation is applied four times, acquiring the
forward output vectors h

(f)
1 ,h

(f)
2 , · · · ,h(f)

J ∈ RI
≥0 and the

backward output vectors h
(b)
J ,h

(b)
J−1, · · · ,h

(b)
1 ∈ RI

≥0. The
dimension of each vector is increased from K + 1 to I at the
first BiRNN layer and is maintained throughout the remain-
ing layers. Finally, the predicted amplitude spectrogram is
composed as

Ŷ = [h1 h2 · · · hJ ] ∈ RI×J
≥ε , (2)

hj = max
(
h
(f)
j ⊙ h

(b)
j , ε

)
∀j, (3)

where ⊙ denotes the Hadamard product and max(·, ·) returns
the maximum value of inputs in each element.

All the DNNs are trained by minimizing the mean squared
error ∥y− ŷ∥22, where ŷ ∈ RIJ

≥ε is a vectorized version of the



Table 1: Experimental conditions
Window and shift lengths in STFT 64/32 ms

Window function in STFT Hann window
Maximum frequency of mel filter bank 8 kHz
Minimum frequency of mel filter bank 0 kHz

Number of mel-filters (K) 64
Flooring value ε 2.0× 10−7

Figure 4: Example of spectrograms for test data (acoustic
flute sound): (a) original, (b) predicted by MLP, (c) predicted
by BiGRU, and (d) predicted by BiLSTM

predicted amplitude spectrogram Ŷ and ∥ ·∥2 is the L2 norm.

3. Experimental evaluation of DNN decoders

3.1 Dataset and conditions

To evaluate the performance of the DNN decoder, we
conducted an experiment on amplitude spectrogram predic-
tion using the neural audio synthesis (Nsynth) dataset [11].
Nsynth is an audio dataset comprising four-second-long sig-
nals of various musical instrument sounds and consists of
305,979 signals. These signals were split into 289,205 train-
ing, 12,678 validation, and 4,096 test data. The other exper-
imental conditions are shown in Table 1. As evaluation cri-
teria, we used amplitude relative squared error (ARSE) and
MFCC relative squared error (MRSE), defined as

ARSE = 10 log10

∑J
j=1

∑I
i=1(yij − ŷij)

2∑J
j=1

∑I
i=1 y

2
ij

[dB], (4)

MRSE = 10 log10

∑J
j=1

∑14
k=2(ckj − ĉkj)

2∑J
j=1

∑14
k=2 c

2
kj

[dB], (5)

Figure 5: Example of spectrograms for test data (synth. key-
board sound): (a) original, (b) predicted by MLP, (c) pre-
dicted by BiGRU, and (d) predicted by BiLSTM

respectively, where ŷij and ckj are the elements of Ŷ and C,
respectively, and ĉkj is the MFCC calculated from the pre-
dicted amplitude spectrogram Ŷ . Small values of ARSE and
MRSE indicate accurate prediction performance. It should be
noted that for calculating MRSE, we only used the MFCCs
from k = 2 to 14, as these dimensions specifically encom-
pass the timbre characteristics.

3.2 Results

Figs. 4, 5, and 6 show examples of original and predicted
amplitude spectrograms. These results confirm that the MLP
consistently fails to predict the amplitude spectrogram: the
predicted results contain numerous spectral holes, resulting
in artificial distortions. Conversely, BiGRU and BiLSTM ac-
curately predict the harmonic structures and temporal transi-
tions within the original amplitude spectrogram. This is due
to the recurrent architecture in BiGRU and BiLSTM, which
effectively captures the time-series structures of the input
data. Also, Fig. 7 shows ARSE and MRSE results averaged
over all test data for each musical instrument. In both scores,
BiLSTM consistently provides the best result for all the in-
struments. The results for mallets are inferior as compared to
other musical instruments. This is likely due to the fact that
mallets are typically classified as percussion instruments, and
their sounds are characterized by complex harmonic struc-
tures and time transitions, as shown in Fig. 6. From these
results, we found that BiLSTM provides satisfactory perfor-
mance in predicting the amplitude spectrogram and, thus, is
a preferred choice for the DNN decoder in the proposed sys-
tem.



Figure 6: Example of spectrograms for test data (acoustic
mallet sound): (a) original, (b) predicted by MLP, (c) pre-
dicted by BiGRU, and (d) predicted by BiLSTM

4. Conclusions

We examined the efficacy of predicting amplitude spec-
trograms from MFCC and loudness using DNNs. Experi-
ments using the Nsynth dataset showed that BiLSTM consis-
tently outperforms MLP and BiGRU models. In future work,
we intend to construct the proposed sound generation system
(Fig. 1) utilizing the BiLSTM-based DNN decoder.
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