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Abstract Timbre conversion of musical instrument sounds, utilizing deep neural networks (DNNs),
has been extensively researched and continues to generate significant interest in the development of more
advanced techniques. We propose a novel algorithm for timbre conversion that utilizes a variational au-
toencoder. However, this system must be capable of predicting the amplitude spectrogram from the mel-
frequency cepstrum coefficient (MFCC). This research aims to build a DNN-based decoder that utilizes the
MFCC and time-frame-wise total amplitude as inputs to predict the amplitude spectrogram. Experiments
conducted using a musical instrument sound dataset show that a decoder incorporating bidirectional long
short-term memory yields accurate predictions of amplitude spectrograms.

Keywords: deep learning, mel-frequency cepstrum coefficient, timbre conversion

1. Introduction

The generation of musical instrument sounds and
the conversion of timbre have been the focus of exten-
sive research. Various techniques based on deep neu-
ral networks (DNNs) have been proposed to tackle
this problem. For example, differentiable digital
signal processing [1] synthesizes musical instrument
sounds by utilizing multiple sinusoidal waves and fil-
tered noise, whose parameters are generated by pre-
trained DNNs. In [2], the waveform of speech signals
is predicted from mel-frequency cepstrum coefficients
(MFCCs) [3] using generative adversarial networks [4].
WaveNet [5] is also utilized to achieve timbre conver-
sion of musical instrument sounds in an end-to-end
manner [6]. These methods directly generate time-
domain waveforms and can be interpreted as a DNN
model that includes the training of phase informa-
tion in the time-frequency domain. However, tim-
bre of sounds strongly depends on the amplitude (or
power) information in the time-frequency domain. In
this paper, we focus on predicting only the amplitude
information using DNNs, omitting the generation of
the time-domain waveform (estimation of phase and
transformation from time-frequency to time domains)
from the DNN training. This approach enables us to
develop a simple timbre conversion system that does
not require a complex DNN architecture and a large

training dataset.
Another approach involves using a variational au-

toencoder (VAE) [7] to generate musical instrument
sounds [8, 9, 10]. This method uses the VAE to ex-
tract disentangled latent features of pitch (note num-
ber) and timbre (musical instrument) labels.

Similar to the aforementioned approach, this pa-
per also focuses on a VAE-based system for the tim-
bre conversion of musical instruments. We are cur-
rently developing a new timbre conversion system, as
depicted in Fig. 1. Our system aims to incorporate
the three fundamental elements of musical instrument
sounds: pitch, timbre, and volume. To represent these
features, we use traditional, well-established features:
note number as a parameter of pitch, an MFCC as a
parameter of timbre, and time-frame-wise total ampli-
tude as a parameter of volume. The timbre conversion
of an input sound is achieved by modifying only the
MFCC on the basis of the pre-trained VAE. We believe
that our proposed system will enable the interpolation
of timbre across multiple types of musical instruments,
and thus contributing to the advancement of new art
and music.

The proposed system (Fig. 1) requires a decoding
process that involves calculating an amplitude spec-
trogram from the note number, manipulated MFCC,
and time-frame-wise total amplitude. However, this
type of decoder cannot be achieved in an analytical

Journal of Signal Processing, Vol.27, No.6, pp.207-211, Novemtber 2023

RESEARCH NOTE

Journal of Signal Processing, Vol. 27, No. 6, November 2023 207



Fig. 1 Process flow of proposed timbre conversion
system

manner. To solve this problem, we propose the uti-
lization of three DNN architectures and evaluate their
suitability for predicting amplitude spectrograms.

2. Proposed System and Its DNN Decoder

2.1 Overview of proposed system

As depicted in Fig. 1, the proposed system first
computes an amplitude spectrogram of the input
sound via a short-time Fourier transform (STFT).
The note number, MFCC, and time-frame-wise to-
tal amplitude are then extracted. While the note
number can be extracted using various techniques as
fo, including DNN-based methods such as [11], the
MFCC and time-frame-wise total amplitude are ob-
tained through deterministic calculations. In the pro-
posed system, the MFCC is assumed to be a reliable
feature that represents the timbre of the sound and
is disentangled from the pitch and volume. To train
the timbre-embedded latent space, the MFCCs of var-
ious multiple musical instruments are input into the
VAE. This training enables us to manipulate only the
timbre of the sounds after the training of the entire
proposed system. Finally, the note number, manip-
ulated MFCC, and time-frame-wise total amplitude
are decoded to obtain the amplitude spectrogram, and
the waveform of the generated sound is obtained via
a phase recovery technique, such as the Griffin–Lim
algorithm [12], and the inverse STFT.

2.2 Motivations and contributions of this
paper

In the proposed system, the output of the VAE
(generated MFCC) must be decoded into an ampli-
tude spectrogram using the note number and time-
frame-wise total amplitude. Since the MFCC is a
dimensionality-reduced feature, this decoding cannot
be achieved through linear operations or analytical
manners. To circumvent this issue, we use a DNN
as the decoder in the proposed system, namely, the
DNN decoder predicts the amplitude spectrogram of
the synthesized sound from the inputted note number,

Fig. 2 Training process flow of proposed DNN-based
timbre decoder

Fig. 3 Architecture of BiRNN used as DNN decoder

MFCC, and time-frame-wise total amplitude. In this
paper, we investigate a suitable architecture for this
DNN decoder and evaluate its accuracy. The evalua-
tion of the entire system shown in Fig. 1 is our future
work.

The training procedure for the DNN decoder is
depicted in Fig. 2. For the decoder, multiple DNNs
are independently prepared and trained for each note
number (from C3 to B5). Thus, fo estimated by
the encoder is used to select the note-number-specific
DNN, and the MFCC and time-frame-wise total am-
plitude are inputted into the selected one. This note-
number-wise model training eliminates the need for
each DNN to posses generalization capabilities for all,
resulting in a high prediction performance.

In this paper, we conduct experimental investiga-
tions to determine the suitable DNN architecture for
the DNN decoder. The performance of the multilayer
perception (MLP), bidirectional gated recurrent unit
(BiGRU) [13], and bidirectional long short-term mem-
ory (BiLSTM) [14] are compared. BiGRU and BiL-
STM are referred to as bidirectional recurrent neural
networks (BiRNNs) [15], which can effectively capture
latent structures of time-series data.
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Table 1 Experimental conditions

Window and shift lengths in STFT 64/32 ms
Window function in STFT Hann window

Sampling frequency 16 kHz
Maximum frequency of mel filter bank 8 kHz
Minimum frequency of mel filter bank 0 kHz

Number of mel-filters (K) 64
Flooring value ε 2.0× 10−7

2.3 Architecture of DNN decoders

Let Y ∈ RI×J
≥0 and yij be the amplitude spectro-

gram of an input sound and its element at frequency
i and time j, respectively, as obtained by STFT. The
time-frame-wise total amplitude of this signal is com-
puted by

vj =

I∑
i=1

(yij + ε) (1)

where ε represents a small value to avoid zero-division.
The amplitude spectrogram is normalized using the
time-frame-wise total amplitude as

yij =
yij
vj

(2)

Then, the MFCC is computed with the normalized
power spectrogram P ∈ RI×J

≥0 , whose element is y2ij .
This MFCC is denoted as C ∈ RK×J , where K is
the order of the MFCC, which is equal to the number
of filters in the bandpass filter known as the mel filter
bank used in the MFCC computation. The input data
of the DNN decoder is defined as

X =

[
C
vT

]
∈ R(K+1)×J (3)

where v = [v1, v2, · · · , vJ ]T ∈ RJ .
For the training of MLP, we vectorize X and input

the vector into the first layer. The label (reference of
the DNN prediction) is defined as y ∈ RIJ

≥0, a vec-
torized version of the original amplitude spectrogram
Y . This MLP consists of three fully connected hid-
den layers with 1024–512–512 dimensions, and each
hidden layer has a rectified linear unit as the activa-
tion function.

The network architecture of BiGRU or BiLSTM
is illustrated in Fig. 3. The column vectors of X,
denoted as xj ∈ RK+1, are input into the first
BiRNN layer. This bidirectional computation is ap-
plied four times, acquiring the forward output vectors
h
(f)
1 ,h

(f)
2 , · · · ,h(f)

J ∈ RI
≥0 and the backward output

vectors h
(b)
J ,h

(b)
J−1, · · · ,h

(b)
1 ∈ RI

≥0. The dimension of
each vector is increased from K + 1 to I in the first

BiRNN layer and is maintained throughout the re-
maining layers. Finally, the predicted amplitude spec-
trogram is composed as

Ŷ = [h1 h2 · · · hJ ] ∈ RI×J
≥ε (4)

hj = max
(
h
(f)
j ⊙ h

(b)
j , ε

)
∀j (5)

where ⊙ denotes the Hadamard product and max(·, ·)
returns the maximum value of inputs in each element.

All the DNNs are trained by minimizing the mean
squared error ∥y− ŷ∥22, where ŷ ∈ RIJ

≥ε is a vectorized
version of the predicted amplitude spectrogram Ŷ and
∥ · ∥2 is the L2 norm.

3. Experimental Evaluation of DNN
Decoders

3.1 Dataset and conditions

To evaluate the performance of the DNN decoder,
we conducted an experiment on amplitude spectro-
gram prediction using the neural audio synthesis
(Nsynth) dataset [6]. Nsynth is an audio dataset
comprising four-second-long signals of various musi-
cal instrument sounds and consists of 305,979 signals.
These signals were split into 289,205 training, 12,678
validation, and 4,096 test data. The other experi-
mental conditions are shown in Table 1. As evalua-
tion criteria, we used amplitude relative squared error
(ARSE) and MFCC relative squared error (MRSE),
defined as

ARSE = 10 log10

∑J
j=1

∑I
i=1(yij − ŷij)

2

∑J
j=1

∑I
i=1 y

2
ij

[dB] (6)

MRSE = 10 log10

∑J
j=1

∑14
k=2(ckj − ĉkj)

2

∑J
j=1

∑14
k=2 c

2
kj

[dB] (7)

respectively, where ŷij and ckj are the elements of Ŷ
and C, respectively, and ĉkj is the MFCC calculated
from the predicted amplitude spectrogram Ŷ . Small
values of ARSE and MRSE indicate accurate predic-
tion performance. Note that when calculating MRSE,
we only used the MFCCs from k = 2 to 14, as these
dimensions specifically encompass the timbre charac-
teristics.

3.2 Results

Figs. 4, 5, and 6 show examples of original and
predicted amplitude spectrograms. These results con-
firm that the MLP consistently fails to predict the
amplitude spectrogram: the predicted results contain
numerous spectral holes, resulting in artificial distor-
tions. In contrast, BiGRU and BiLSTM accurately
predict the harmonic structures and temporal transi-
tions within the original amplitude spectrogram. This
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Fig. 4 Example of spectrograms for test data (acous-
tic flute sound): (a) Original, (b) Predicted by MLP,
(c) Predicted by BiGRU, and (d) Predicted by BiL-
STM

is due to the recurrent architecture in BiGRU and BiL-
STM, which effectively captures the time-series struc-
tures of the input data. In addition, Fig. 7 shows
ARSE and MRSE results averaged over all test data
for each musical instrument. In both scores, BiLSTM
consistently provides the best result for all the instru-
ments. The results for mallets are inferior as compared
with other musical instruments. This is likely because
mallets are typically classified as percussion instru-
ments, and their sounds are characterized by complex
harmonic structures and time transitions, as shown
in Fig. 6. From these results, we found that BiL-
STM provides satisfactory performance in predicting
the amplitude spectrogram, making it the preferred
choice for the DNN decoder in the proposed system.

4. Conclusion

We examined the efficacy of predicting amplitude
spectrograms from the MFCC and time-frame-wise to-
tal amplitude using DNNs. Experiments using the
Nsynth dataset showed that BiLSTM consistently out-
performs MLP and BiGRU models. From the re-
sults, the proposed method achieved accurate spectro-
gram prediction for several musical instruments, e.g.,
string, flute, guitar, and keyboard. We expect that
a VAE-based timbre conversion system can provide
better performance, particularly for these musical in-
struments. In future work, we intend to construct the
proposed sound generation system (Fig. 1) utilizing
the BiLSTM-based DNN decoder.

Fig. 5 Example of spectrograms for test data (synth.
keyboard sound): (a) Original, (b) Predicted by MLP,
(c) Predicted by BiGRU, and (d) Predicted by BiL-
STM
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