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Abstract—This paper focuses on frequency-domain blind
source separation (BSS) for audio signals. This technique esti-
mates frequency-wise source components from an observed spec-
trogram. Full-rank spatial covariance analysis and frequency-
domain independent component analysis are algorithms com-
monly used for this task. Using these methods, however, results
in an alignment problem of frequency-wise permutations of the
estimated source components. This is known as the permutation
problem, which has been addressed for decades and requires
a robust and precise permutation solver post-processing. We
introduce a permutation solver that uses a deep neural network
and predicts the correct source permutations in each frequency.
The experimental results demonstrate the validity of the proposed
approach and its robustness against the domain of the dataset.

I. INTRODUCTION

Multichannel audio source separation is a technique for
estimating source signals from an observed multichannel mix-
ture signal. The methods that do not require a priori spatial
information, e.g., locations of sources and microphones, are
called blind source separation (BSS) [1]. For a determined
situation (in which the numbers of microphones and sources
are the same), independent component analysis (ICA) [2] and
its variants have widely been utilized in BSS tasks.

A typical approach for audio BSS is frequency-domain ICA
(FDICA) [3]. In FDICA, the observed multichannel signal
is converted to the time-frequency domain by a short-time
Fourier transform (STFT). Then ICA is independently applied
to each frequency to estimate the separated source components.
However, using FDICA leads to the permutation problem
which will be addressed in this paper. Because ICA has per-
mutation indeterminacy of estimated signals, the source order
of ICA outputs depends on the initial values of parameters.
For this reason, the estimated source components of FDICA
are not aligned along the frequencies, as shown in Fig. 1.
This is known as the permutation problem, which often arises
even in underdetermined BSS, e.g., full-rank spatial covariance
analysis [4].

Various permutation solvers with hand-crafted criteria have
been studied in the context of FDICA [5], [6], [7], [8]. Subse-
quently, the mainstream approach for BSS shifted to develop-
ing a simultaneous solution of frequency-wise separation and
the permutation alignment. In these methods, to avoid the per-
mutation problem, the time-frequency structure of each source
is assumed as a source model, which is then combined with
FDICA. For example, independent vector analysis (IVA) [9],
[10], [11], [12] assumes group sparsity in the spectrogram of
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Fig. 1. Permutation problem in FDICA (N = M = 2).

each source as the source model. Independent low-rank matrix
analysis (ILRMA) [13], [14] assumes that sources inherently
have a low-rank time-frequency structure and models them
by nonnegative matrix factorization [15]. Independent deeply
learned matrix analysis [16] utilizes a deep neural network
(DNN) that is trained by using specific audio datasets. The
source model based on time-frequency masks has also been
utilized [17], [18]. These methods provide more accurate BSS
when the source model fits well with each of the sources in
the observed signal. However, in [19], we found that FDICA
with an ideal permutation solver (using oracle source signals)
significantly outperforms IVA and ILRMA. This suggests
that FDICA has the potential to achieve high-quality BSS,
and the remaining task is to solve the permutation problem.
The challenge is building a universal source model that fits
various sources (speech signals, vocals, musical instruments,
background noise, etc.).

To directly obtain such a versatile model, DNN-based su-
pervised approaches with a large dataset and extensive training
have shown potential for speech enhancement and audio source
separation. Various methods have been proposed, such as those
in Ref. [20], [21], [22]. In these techniques, the size and
versatility of the training data are crucial for obtaining the
universal source model and improving separation performance,
but collecting and producing such training datasets is costly.
Thus, BSS (without model training) or a separation technique
with few-shot learning is still important.

We previously proposed an approach that utilizes a DNN to
solve the permutation problem rather than building versatile
source models [23]. This approach only requires a few-shot
audio dataset because the permutation problem can easily be
simulated by randomly shuffling the frequency components of
the audio spectrogram. In the experimental section, we will
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show that the permutation problem can be mostly solved by
using training data that are produced from only two 11-s-long
audio signals. This is an advantage of the permutation solver
over various DNN-based supervised approaches.

In our previous method, the DNN was trained to predict
whether the source components of the reference frequency and
the other frequencies belong to the same source as a binary
classification, where the source components are estimated by
FDICA. Because predictions are performed for each subband,
implementing the permutation solver based on the predicted
results becomes a complicated process, particularly for three
or more sources. In addition, the performance of the method
depends on the type of sources used in the training dataset.

In this paper, to solve the above-mentioned problems, we
propose a simple algorithm for the DNN-based permutation
solver, which can easily extend to three or more sources. We
demonstrate its performance and robustness against the dataset
domain to evaluate its versatility.

II. FDICA AND PERMUTATION PROBLEM

A. Definitions of Signals

Let the source and observed signals in the time-frequency
domain be

sij = [sij1, sij2, · · · , sijn, · · · , sijN ]
T ∈ CN , (1)

xij = [xij1, xij2, · · · , xijm, · · · , xijM ]
T ∈ CM , (2)

respectively, where i = 1, 2, · · · , I , j = 1, 2, · · · , J , n =
1, 2, · · · , N , and m = 1, 2, · · · ,M are the indices of fre-
quency, time, source, and channel, respectively. Also, let the
estimated signal obtained by FDICA be

zij = [zij1, zij2, · · · , zijn′ , · · · , zijN ]
T ∈ CN , (3)

where the indices n and n′ are used properly to represent the
ambiguity of a source permutation, e.g., the estimated signal
of sij1 could be zij2. As we only focus on the determined
situation, N = M is assumed throughout the paper. In
addition, we also define time-frequency matrices (complex-
valued spectrograms) of the nth source, the mth observed,
and the n′th estimated signals as Sn ∈ CI×J , Xm ∈ CI×J ,
and Zn′ ∈ CI×J , respectively.

B. BSS Formulation and FDICA

FDICA [3] assumes the frequency-wise mixing system [19],
[24]:

xij = Aisij , (4)

where Ai ∈ CM×N is a time-invariant frequency-wise mixing
matrix. When the mixing matrix Ai is nonsingular, there exists
a frequency-wise demixing matrix Wi = A−1

i ∈ CN×M .
With this ideal demixing matrix, the estimated signal can be
obtained as

zij = Wixij . (5)

Thus, FDICA independently applies ICA to the complex-
valued time-series signals of each frequency, (xij)

J
j=1, and

estimates the frequency-wise demixing matrix Wi over all the
frequencies.

C. Permutation Problem

Because ICA has indeterminacy of scale and permutation of
the estimated signals, the demixing matrix obtained by FDICA,
Ŵi ∈ CN×M , is represented as

Ŵi = DiPiWi, (6)

where Di ∈ RN×N is a diagonal matrix that may change the
scale of (zij)Jj=1 and Pi ∈ {0, 1}N×N is a permutation matrix
that may replace the source order of (zij)Jj=1. For example,

Pi =

[
1 0
0 1

]
or

[
0 1
1 0

]
(for N = 2), (7)

Pi =

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 , or

0 0 1
0 1 0
1 0 0

 (for N = 3). (8)

The permutation matrix is a doubly stochastic matrix
(DSM) [25], [26] because the summations of rows and columns
are all unity.

As a result, the estimated signal of FDICA,

yij = Ŵixij =
[
yij1, yij2, · · · , yijn′

i
· · · , yijN

]T ∈ CN ,
(9)

includes inconsistent scales and permutations along the fre-
quencies, where n′

i = 1, 2, · · · , N is a new source index to
represent the permutation ambiguity in each frequency. The
scale ambiguity caused by Di can be easily recovered by
applying a projection-back technique [27]. However, it is not
easy to align the source permutations along the frequencies,
which is the permutation problem. Fig. 1 shows a schematic
of the problem, where Yn′ ∈ CI×J is the n′th spectrogram of
the estimated signal yij (including the permutation problem).

The ideal permutation solver is defined as zij =
P−1

i D−1
i yij . Thus, solving this problem is interpreted as

an estimation of P−1
i over all frequencies. Strictly speaking,

however, even if the source permutations are aligned correctly,
the indeterminacy of permutation of entire frequency compo-
nents (i.e., the sources) remains. Thus, the separated signal is
represented as

zij = PallP
−1
i D−1

i yij , (10)

where Pall ∈ {0, 1}N×N is a frequency-independent permuta-
tion matrix. The estimation of P−1

all is out of the scope of this
paper.

III. PROPOSED METHOD

A. Motivation

As described in Sect. I and [23], the DNN-based permutation
solver directly assists FDICA-based BSS rather than the source
model tailored to the specific source types. In addition, the
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training data (signals with the permutation problem) can easily
be produced by randomly shuffling the frequency components
of source signals, which enables few-shot learning. For these
reasons, this paper only focuses on developing a simple, robust,
and precise DNN-based permutation solver.

The conventional DNN-based permutation solver [23] trains
a DNN that solves the permutation problem within a spe-
cific subband and applies the DNN to all subbands. In each
subband, the center frequency is defined as the reference
frequency. The DNN predicts whether the components in the
reference frequency and the other frequencies (within the
subband) belong to the same source. When N = 2, this
binary classification coincides with estimating a specific source
permutation. However, when N ≥ 3, we cannot determine
the source permutation when the DNN outputs that the two
components are not the same source. Therefore, we need to
apply the DNN to all of the pair combinations from N sources.
Furthermore, the post-process for solving the permutation
problem among subbands, which is a stitching technique along
subbands, becomes more complicated as the number of sources
increases. To solve this problem, we propose a simple DNN-
based permutation solver that directly predicts the permutation
matrix P−1

i for all frequencies simultaneously.

B. Input and Output of DNN

FDICA outputs spectrograms of the estimated signal,
(Yn′)Nn′=1, including the permutation problem. As a pre-
process, normalized power spectrograms are calculated as

Y n′ =
|Yn′ |.2∑N

n′=1 |Yn′ |.2
∈ [0, 1]I×J , (11)

where | · |.2 for matrices denotes an element-wise absolute
and square operation. This normalization stabilizes the training
of the DNN and enhances correlations between the same
source components [6]. Then, we extract a temporally local
spectrogram from (Y n′)Nn′=1 centered at time j as

Y̌jn′ = [y(j−β)n′ y(j−β+1)n′ · · · y(j+β)n′ ]∈ [0, 1]I×(2β+1),

(12)

where yjn′ ∈ [0, 1]I is the jth column vector of Y n′ .
β > 0 is a hyperparameter that determines the duration of
the local spectrogram Y̌jn′ . The input of the proposed DNN
is a flattened vector of (Y̌jn′)Nn′=1:

dj =
[
vec(Y̌j1)

T, · · · , vec(Y̌jN )T
]T ∈ [0, 1]NI(2β+1), (13)

where vec(·) denotes the vectorization of an input matrix.
As shown in Fig. 2, the DNN’s prediction can be defined

as

L̂j = DNN(dj) ∈ [0, 1]I×N !, (14)

where L̂j is a matrix that consists of the probabilities l̂iqj for
the permutation matrices, and q = 1, 2, · · · , N ! is the index
of the permutations. For example, when N = 2, the predicted
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Fig. 2. Calculation of predicted permutation matrix for N = 2 case.
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Fig. 3. DNN architecture for N = 2 case.

permutation matrix can be constructed by using l̂i1j and l̂i2j
as

P̂−1
ij = l̂i1j

[
1 0
0 1

]
+ l̂i2j

[
0 1
1 0

]
∈ [0, 1]N×N . (15)

When N = 3, the probabilities (l̂iqj)
3!
q=1 are predicted, and

P̂−1
ij is constructed as a linear combination of the matrices

(8). Note that
∑

q l̂iqj = 1 is constrained in the DNN.
Thus, the proposed DNN directly predicts the correct per-

mutation matrix for all frequencies simultaneously. From a
different perspective, because (15) is a DSM, the DNN predicts
coefficients of a convex combination of the true permutation
matrices, which is known as the Birkhoff–von Neumann the-
orem [28].

C. DNN Architecture

Fig. 3 shows the architecture of the DNN used in the
proposed method. All of the layers consist of fully connected
layers. Rectified linear unit (ReLU) functions [29] are used
from the first to the third hidden layers. The output layer
explicitly branches into N ! (I-dimensional) vectors with fully
connected (non-shared) weights, and the frequency-wise soft-
max function is applied to each of the elements to ensure∑

q l̂iqj = 1.

D. Loss Function

The process after obtaining P̂−1
ij is shown in Fig. 4, where

(Ýjn′)Nn′=1 is the temporally local spectrograms of (Yn′)Nn′=1

(before the normalization (11)) extracted in the same manner
as (12). First, (Ýjn′)Nn′=1 is softly aligned by multiplying
the predicted permutation matrices (P̂−1

ij )Ii=1 in the same
manner as (10), where the obtained spectrograms are defined
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TABLE I
SPEECH AND MUSIC SOURCES OBTAINED FROM SISEC2011 [31]

Signal type Source Data name Length

Speech Male speech dev2_male4_inst_src_2.wav 10.0 s
Female speech dev3_female4_inst_src_2.wav 10.0 s

Music Drums dev1_wdrums_src_3.wav 11.0 s
Bass dev1_wdrums_src_2.wav 11.0 s

as ( ̂̌Zn′)Nn′=1. Then, we prepare the correctly aligned local
spectrograms (Žn′)Nn′=1 for (Yn′)Nn′=1 as the label signals.
Finally, the mean squared error (MSE) between ( ̂̌Zn′)Nn′=1

and (Žn′)Nn′=1 is calculated as a loss function value of the
DNN. As mentioned in Sect. II-C, we do not estimate the
correct order of the sources, i.e., P−1

all . To permit this source-
order ambiguity while training the DNN, permutation invariant
training (PIT) [30] is introduced. The loss function L is defined
as

L = min(C1, C2, · · · , CN !), (16)

Cq =

N∑
n′

|| ̂̌Zjn′ − ŽjP(q,n′)||22, (17)

where min(·) is a minimum value of inputs and P(q, n′)
returns the n′th scalar in the qth permutation of all possible
permutations.

E. Application of Pretrained DNN to Test Data

When we apply the trained DNN to test data (Yn′)Nn′=1, the
temporally local spectrograms (Y̌jn′)Nn′=1 with various time j
can be input to the DNN. Because the permutation matrix
Pi is time-invariant, the effect of prediction errors can be
mitigated by taking the majority decision among the predicted
permutation matrices (P̂−1

ij )Jj=1 as

P̂−1
i = round

 1

J

J∑
j=1

P̂−1
ij

 ∈ {0, 1}N×N , (18)

where round(·) denotes the element-wise rounding off. The
separated signal is obtained by

ẑij = P̂−1
i yij . (19)

IV. EXPERIMENTS

A. Conditions

We conducted experiments to compare performances of
the conventional [23] and proposed methods. Furthermore,
we show the robustness of the proposed method against the
domain of the dataset, which demonstrates the validity of the
DNN-based permutation solvers.

In this experiment, two pairs of dry source signals shown in
Table I were used as (Sn)

2
n=1. These sources were obtained

from SiSEC2011 [31]. The sampling frequency of these signals
was 16 kHz. STFT was performed using the 128-ms-long Hann
window with 64-ms-long shifting, resulting in I = 1025 and
J = 158 (speech signal) or J = 173 (music signal). To sim-
ulate the block permutation problem [32], which often arises
in IVA and ILRMA, the entire frequencies of (Sn)

2
n=1 were

divided into 64 blocks (each block containing 16 frequency
bins), and these blocks were randomly swapped between S1

and S2 to produce the input signal of the permutation solvers,
i.e., (Yn′)2n′=1. The training dataset for the conventional and
proposed DNNs was generated from 300 random swapping
patterns. Then, ten new patterns of randomly swapped signals
were used as the test dataset for evaluation.

For the conventional method, the conditions of the DNN
model, hyperparameters, and optimization were set to the same
as those in [23]. For the proposed method, all of the hidden
layers had 4096 units, and the number of local time frames was
set to β = 13. We used the Adam optimizer with the minibatch
size set to eight, and the number of training epochs was 1000.
For both the conventional and proposed methods, we trained
two DNN models, the speech and the music models, using only
the speech and music signals, respectively. Then, we evaluated
these models using the test dataset of both speech and music
mixtures, i.e., in-domain (using the same sources in the training
and testing) and out-domain (using different sources in the
training and testing) evaluations. We used source-to-distortion
ratio (SDR) [33] as the evaluation score, which represents
accuracy and quality of BSS.

B. Results

Figs. 5 and 6 show examples of permutation-simulated and
aligned signals estimated by the conventional and proposed
methods for the in-domain test dataset. Both the conventional
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Fig. 5. Input (left) and estimated signals of conventional (center) and proposed
methods (right): male (top) and female (bottom) speech.

and proposed methods solve the permutation problem with
high accuracy. However, the conventional method often fails
to align the sources in a low-frequency band, which is crucial
for SDR and subjective listening. Figs. 7 and 8 show the SDR
values for the in-domain and out-domain test datasets, respec-
tively. The values of the observed and estimated signals shown
are averaged over the two sources. For both the speech and
music results of the in-domain evaluation, the proposed method
improved SDR by over 20 dB on average. In contrast, the
conventional method often failed to improve SDR, particularly
for the music signals. Furthermore, the efficacy of the proposed
method can be verified even in the out-domain evaluation. This
result shows the robustness against the domain of the dataset
used to train the proposed DNN.

V. CONCLUSION

We proposed a DNN-based permutation solver that directly
predicts the permutation matrices for all frequencies simultane-
ously. The experimental results show significant improvement
from the conventional method. We also verified the robustness
against the domain of the dataset. The combination of a
BSS technique and the proposed permutation solver for three
or more sources will be compared with other conventional
approaches in future work. In addition, explicit learning of
dependencies along frequencies should be introduced.
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Fig. 6. Input (left) and estimated signals of conventional (center) and proposed
methods (right): drums (top) and bass (bottom).
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