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Determined BSS Based on Time-Frequency Masking
and Its Application to Harmonic Vector Analysis
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Abstract—This paper proposes harmonic vector analysis (HVA)
based on a general algorithmic framework of audio blind source
separation (BSS) that is also presented in this paper. BSS for a
convolutive audio mixture is usually performed by multichannel
linear filtering when the numbers of microphones and sources
are equal (determined situation). This paper addresses such de-
termined BSS based on batch processing. To estimate the demixing
filters, effective modeling of the source signals is important. One
successful example is independent vector analysis (IVA) that models
the signals via co-occurrence among the frequency components
in each source. To give more freedom to the source modeling, a
general framework of determined BSS is presented in this paper. It
is based on the plug-and-play scheme using a primal-dual splitting
algorithm and enables us to model the source signals implicitly
through a time-frequency mask. By using the proposed framework,
determined BSS algorithms can be developed by designing masks
that enhance the source signals. As an example of its application, we
propose HVA by defining a time-frequency mask that enhances the
harmonic structure of audio signals via sparsity of cepstrum. The
experiments showed that HVA outperforms IVA and independent
low-rank matrix analysis (ILRMA) for both speech and music
signals. A MATLAB code is provided along with the paper for a
reference.

Index Terms—Blind source separation (BSS), independent
component analysis (ICA), cepstrum analysis, Wiener-like mask,
plug-and-play scheme, proximal splitting algorithm.

I. INTRODUCTION

B LIND source separation (BSS) is a methodology to recover
the source signals from multiple mixtures (audio record-

ings in the case of this paper) without any knowledge about the
mixing system. Let a convolutive mixing process of the signals
be approximated in the time-frequency domain as

x[t, f ] ≈ A[f ]s[t, f ], (1)

where x = [x1, x2, . . . , xM ]T ∈ CM is the observed mixtures
obtained byM microphones, s = [s1, s2, . . . , sN ]T ∈ CN is the
vector of source signals to be recovered, N is the number of
source signals that is assumed to be known,A[f ] ∈ CM×N is the
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mixing matrix, and t = 1, . . . , T and f = 1, . . . , F are indices
of time and frequency, respectively. Throughout this paper,
each element of multichannel signals in CM×T×F is denoted
by xm[t, f ] ∈ C, and the mth spectrogram is represented as
xm[·, ·] ∈ CT×F . The aim of BSS is to recover the unknown
source signals, s, only from the mixtures,x. This paper considers
batch processing, i.e., mixtures for all t are given beforehand.
In the determined (M=N ) or overdetermined (M>N ) sit-
uation, the usual strategy for solving the BSS problem is to
formulate an estimation problem of finding (or approximating)
a demixing matrix,W[f ] ∈ CN×M , that is a left inverse ofA[f ]
(i.e., W[f ]A[f ] = I, where I is the identity matrix). Then, the
source signals are recovered by multiplication of the estimated
demixing matrix as follows:

W[f ]x[t, f ] ≈ W[f ]A[f ]s[t, f ] = s[t, f ]. (2)

By reducing the BSS problem into the demixing matrix esti-
mation problem, the difficulty of directly tackling the unknown
mixing process in Eq. (1) is circumvented. This paper focuses
on the above formulation of the (over)determined BSS, where
the demixing matrix W[f ] is estimated for all f only from the
observed data x[t, f ].

Statistical independence between the source signals is the
well-accepted assumption for handling this ill-posed prob-
lem [1], [2]. While there exists several formulations depending
on a method to measure the independence, many of them fall
into a minimization problem of the following form [1]:

Minimize
(W[f ])Ff=1

N∑
n=1

Pn(W[f ]x[t, f ]) −
F∑
f=1

log |det(W[f ])|,

(3)
where the log-determinant term is obtained from either maxi-
mum likelihood (ML) estimation or minimizing mutual infor-
mation [1], and Pn is a real-valued function corresponding to
the model of the nth source (in the case of ML estimation,
C exp(−Pn(·)) corresponds to the density function of the nth
source). For example, with some constant C, the �1 norm,

Pn(y[t, f ]) = C ‖yn[·, ·]‖1 = C

T∑
t=1

F∑
f=1

|yn[t, f ]| , (4)
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recovers the frequency-domain independent component analysis
(FDICA) [3]–[9] based on the Laplace distribution, and the �2,1-
mixed norm that treats each time segment as the group,

Pn(y[t, f ]) = C ‖yn[·, ·]‖2,1 = C
T∑
t=1

( F∑
f=1

|yn[t, f ]|2
)1

2

, (5)

obtains independent vector analysis (IVA) [10]–[13] with the
spherical Laplace distribution. The state-of-the art method called
the independent low-rank matrix analysis (ILRMA) [14]–[16]
can also be interpreted as Eq. (3) by considering a function that
depends on the rank of each spectrogram,

Pn(y[t, f ]) = C DR(yn[·, ·]), (6)

where DR(yn[·, ·]) is the scalar-valued function that measures
low-rankness of a power spectrogram based on the Itakura–Saito
non-negative matrix factorization (IS-NMF) [17]:

DR(yn[·, ·]) =

min
ϕ

[n]
f,r≥0,ψ

[n]
r,t≥0

T∑
t=1

F∑
f=1

(
|yn[t, f ]|2∑R
r=1ϕ

[n]
f,rψ

[n]
r,t

+ log

R∑
r=1

ϕ
[n]
f,rψ

[n]
r,t

)
,

(7)

where ϕ[n]
f,r and ψ[n]

r,t capture the spectral and activation patterns
of |yn[t, f ]|2, respectively, and R represents rank.

The key to success in these BSS methods is to incorporate
prior knowledge on the source signals through the penalty func-
tion, Pn(·). IVA imposes co-occurrence among the frequency
components in each source signal by a frequency-grouped mea-
sure as in Eq. (5). Such grouping of frequency components as-
sists in resolving the permutation problem [18]–[21] associated
with the frequency-wise treatment of the demixing matrices.
ILRMA takes advantage of a more sophisticated source model
to achieve the superior performance. It assumes low-rankness
on the power spectrogram of each source so that inter-frequency
and inter-frame dependences of a source signal are captured
via NMF. Recent advancement of (over)determined BSS relies
on even more sophisticated source models to improve the sep-
aration performance, e.g., super-/sub-Gaussian ILRMA [22],
[23], tensor-factorization-based ILRMA [24], [25], and deter-
mined BSS methods based on supervised learning of the source
models [26], [27]. Therefore, seeking a better source model is
important for developing a novel and effective BSS method.

However, the mainstream algorithms as auxIVA [13] and IL-
RMA [14] cannot easily handle a new source model because they
are specialized to each model. These state-of-the-art algorithms
are based on the majorization-minimization (MM) principle [28]
that requires upper-bounds approximating the objective function
for easier minimization. Since an upper-bound must be specially
designed for each objective function, this requirement forces
one to derive a new algorithm each time when a source model
is newly defined. Derivation of the upper-bound is usually
heuristic, and it might take a lot of time before examining the
performance with a new source model. One reason for such
complication is that those BSS methods are based on the explicit
source models (i.e., the source models are explicitly defined as

an objective function). Although a framework based on implicit
models has potential of resolving this issue, such framework for
determined BSS has rarely been investigated in the literature.

In this paper, to realize effortless investigation of a new source
model, we present a general algorithmic framework based on an
implicit source model defined via a time-frequency mask. Since
the basic principle of the BSS methods is super-Gaussianity,
or sparsity, of the source signals in the time-frequency domain,
the difference among the determined BSS methods is the way
how to impose the sparsity within their separation processes.
In this respect, the techniques developed with sparsity-based
signal processing [29]–[34], such as the proximal splitting tech-
nique [35]–[38], should be beneficial to BSS. By applying one of
the proximal algorithms called primal-dual splitting (PDS) algo-
rithm [39], the determined BSS problem in Eq. (3) is handled in a
unified manner (Section III). Then, the algorithm is heuristically
extended by incorporating a general time-frequency masking
method (Section IV). This kind of heuristic extension is called
the plug-and-play scheme whose effectiveness has been con-
firmed in several applications [40]–[44]. The resulted algorithm
offers tremendous flexibility into determined BSS because any
masking method can be utilized to estimate the demixing matrix,
even if the corresponding source model cannot be explicitly
written as a formula.

As an application of the general algorithm, we propose a novel
BSS method termed harmonic vector analysis (HVA). To model
the source signals, HVA focuses on the harmonic structure of
audio signals as a cue for separation. By considering sparsity
of the cepstrum coefficients, the co-occurrence of the harmonic
components is captured. Then, HVA constructs a Wiener-like
mask so that the separated signals in each iteration become
more exclusive and unmixed. HVA has the properties of both
IVA and ILRMA because HVA can consider the spectral pattern
of audio signals as ILRMA while it independently treats each
time segment as IVA. The experimental results showed that the
proposed HVA can achieve the state-of-the-art performance for
both speech and music signals.

A. Contribution and Outline

This paper is an extension of the preliminary versions pub-
lished in the conference proceedings [45], [46]. The contribution
of this paper can be summarized as follows:
� unified and detailed presentation of the separately intro-

duced algorithms [45], [46];
� new extensive experiments for investigating parameters

and performance of the algorithms;
� proposal of a new BSS method, HVA, with some new

ideas for realizing it, including cepstrum thresholding,
non-separable masking, and cosine shrinkage operator;

� provision of computational procedures and MATLAB
code [47].

The rest of the paper is organized as follows. The techni-
cal contents begin with some brief explanation of the proxi-
mal algorithm and the proximity operator in Section II. Then,
their application to the determined BSS problem in Eq. (3) is
presented in Section III, and its heuristic extension based on
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time-frequency masking is explained in Section IV. After HVA
is proposed in Section V, they are experimentally evaluated in
Section VI. Finally, the paper is concluded in Section VII.

II. PRELIMINARIES

A. Primal-Dual Splitting (PDS) Algorithm

In this paper, one of the PDS algorithms is adopted for splitting
the first and second terms in Eq. (3). At first, let us briefly
summarize it in the usual setting. The PDS algorithm can handle
the following general minimization problem:

Minimize
w

g(w) + h(Lw), (8)

where w is the vector to be optimized, g and h are proper lower-
semicontinuous convex functions, and L is a bounded linear
operator. Here, both g andh can be non-differentiable, and hence
a gradient-based optimization method may not be applicable for
solving it.

When h is non-differentiable in particular, its composition
with L makes the problem difficult. To handle such difficulty,
the associated dual problem is also considered [37]:

Minimize
y

g∗(−L∗y) + h∗(y), (9)

where y is the dual variable, L∗ is the adjoint of L, and g∗ is
the Fenchel conjugate of g. Note that this paper avoids explicit
consideration of the conjugate by Moreau’s identity [37],

proxh∗ [z] = z− proxh[z], (10)

and therefore we leave its details in the reference [37]1 (the
definition of the proximity operator, proxh, will be given in the
next subsection). In the dual problem, h∗ is free from the linear
operator, L, whereas g is free from it in the primal problem in
Eq. (8). Thus, by simultaneously solving the primal and dual
problems in Eqs. (8) and (9), the iterative procedure of the
PDS algorithm can circumvent the composition of L with the
objective functions g and h as follows [39]:⎢⎢⎢⎢⎢⎣

w̃ = proxμ1 g

[
w[k] − μ1μ2L

∗y[k]
]
,

z = y[k] + L(2w̃ −w[k]),
ỹ = z− prox 1

µ2
h[ z ],

(w[k+1],y[k+1]) = α(w̃, ỹ) + (1− α)(w[k],y[k]),

(11)

where z is a temporary variable introduced for simpler notation,
μ1 > 0 and μ2 > 0 are step sizes, and 2 > α > 0 is a parameter
that adjusts the speed of convergence [note that the last line
of Eq. (11) can be omitted when α = 1 is chosen]. The above
iterative procedure enables full splitting of the optimization
problem in Eq. (8). That is, the objective functions, g and h, as
well as the linear operator, L, can be calculated independently
of each other. Therefore, changing one of them (g, h or L) only
requires modification of the corresponding operator while the
others are intact.

1Although Moreau’s identity holds only when the function h is convex, this
identity is essential for our heuristic extension to a non-convex function. This
is because, by definition, the proximity operator of the Fenchel conjugate of a
sparsity-inducing non-convex function is useless for processing.

For guaranteed convergence, the step-size parameters must
be chosen to satify the following inequality [39]:2

μ1μ2‖L‖2s ≤ 1, (12)

where ‖ · ‖s denotes the spectral norm (‖L‖s = σ1(L)), and
σ1(L) is the largest singular value of L. The parameter α can be
arbitrarily chosen from (0, 2), whereα = 1 is the standard speed,
α > 1 accelerates, and α < 1 slows down the algorithm. Note
that the above condition is valid only for a convex problem. The
heuristic extension in Section IV will remove the theoretical
guarantee of the algorithm, and hence empirical convergence
must be experimentally investigated for a general problem. Even
so, we will use Eq. (12) to set the parameters because we
empirically found its usefulness.

B. Proximity Operator and Thresholding Operator

In the above PDS algorithm, the objective functions, g and h,
are minimized via the proximity operator [36]:

proxμg[z] = argmin
ξ

[
g(ξ) +

1

2μ
‖z− ξ‖22

]
, (13)

where the left-hand side is regarded as an element of the right-
hand side that is singleton for convex g. This subproblem is much
easier than the original problem in Eq. (8). Hence, the PDS
algorithm splits the original problem into easier subproblems
so that the difficulty is alleviated. The proximity operator is
particularly useful for handling a non-differentiable function
(e.g., a sparsity-inducing function) or a differentiable function
whose gradient is not Lipschitz continuous (e.g.,− log(·)). Since
the determined BSS problem in Eq. (3) consists of such two
functions, it seems natural to handle the BSS problem by the
proximity operator.

As is well-known, the proximity operators of some sparsity-
inducing penalty functions are closely related to the thresholding
(or shrinkage) operators. For example, the proximity operator
associated with the �1 norm in Eq. (4) is given by the bin-wise
soft-thresholding operator [36],(

proxλ‖·‖1 [z]
)
n
[t, f ] =

(
1− λ

|zn[t, f ]|

)
+

zn[t, f ], (14)

where λ ≥ 0 is the thresholding parameter, (·)+ = max{0, ·}
is the half-wave rectifier that replaces negative values by zero,
and (·)n[t, f ] denotes the (n, t, f)th element of the N × T × F
array. The proximity operator of the �2,1-mixed norm in Eq. (5)
is also given by the group-thresholding operator [36],(
proxλ‖·‖2,1 [z]

)
n
[t, f ] =

(
1− λ

(
∑F
f=1 |zn[t, f ]|2)

1
2

)
+

zn[t, f ].

(15)
Proximity operators associated with many other sparsity-
inducing functions can also be computed as thresholding op-
erators [29]. While the penalty functions in the above examples
are all convex, the proximity operator is also well-defined for
some non-convex functions [34], which may be able to induce
sparsity more strongly than the convex ones.

2Strictly speaking, some conditions on the problem (such as non-emptiness
of the solution set) are necessary for discussing the convergence [37].
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III. PDS ALGORITHM FOR DETERMINED BSS

In this section, the PDS algorithm given in Section II-A is
applied to the general determined BSS problem in Eq. (3) for
obtaining a base algorithm [45].

A. Reformulation and Vectorization of the BSS Problem

To apply the PDS algorithm, the BSS problem is reformulated
into the form of Eq. (8). First, to consider the proximity operator,
the second term is modified. Since the determinant of a matrix
can be expressed in terms of its singular values as |det(W[f ])| =∏N
n=1 σn(W[f ]), Eq. (3) can be rewritten as

Minimize
(W[f ])Ff=1

P(W[f ]x[t, f ]) −
F∑
f=1

N∑
n=1

log σn(W[f ]), (16)

where σn(W[f ]) ≥ 0 is the nth singular value of W[f ] in
descending order. Note that the penalty function, P , is also
slightly generalized by omitting the summation so that it can
be a non-separable function.

Next, the optimization variables are vectorized. All demixing
matrices, (W[f ])Ff=1, are vectorized and vertically concatenated
to construct an NMF -dimensional vector w:

w = [w[1]T,w[2]T, . . . ,w[F ]T]T ∈ CNMF , (17)

w[f ] = vec(W[f ]) ∈ CNM , (18)

where vec is the vectorizing operator converting a matrix into
the corresponding vector in the row-major numbering scheme,

vec(W[f ])=[W1,1[f ], . . . ,W1,M [f ],W2,1[f ], . . . ,WN,M [f ]]T.
(19)

The linear operator that converts the f th part of the vector w[f ]
back into the matrix W[f ] is also defined as

mat(w[f ]) = W[f ] ∈ CN×M , (20)

which indicates that w[f ] = vec(mat(w[f ])). With these nota-
tions, Eq. (16) can be expressed as follows:

Minimize
w

P(Xw) −
F∑
f=1

N∑
n=1

log σn(mat(w[f ])), (21)

where X is an NTF ×NMF sparse matrix constructed by
copying the observed data, x[t, f ], as

X = blkdiag(χ[1],χ[2], . . . ,χ[F ]) ∈ CNTF×NMF, (22)

χ[f ] = blkdiag(χ[f ], χ[f ], . . . , χ[f ]) ∈ CNT×NM , (23)

χ[f ] = [τ1[f ], τ2[f ], . . . , τM [f ]] ∈ CT×M , (24)

τm[f ] = [xm[1, f ], xm[2, f ], . . . , xm[T, f ]]T ∈ CT , (25)

andblkdiag is the operator constructing a block-diagonal matrix
by concatenating inputted matrices diagonally.

Let the second term in Eq. (21) be shortly denoted by I:

I(w) = −
F∑
f=1

N∑
n=1

log σn(mat(w[f ])). (26)

Algorithm 1: PDS-BSS [45].

1: Input: X, w[1], y[1], μ1, μ2, α
2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxμ1I [ w

[k] − μ1μ2X
Hy[k] ]

5: z = y[k] +X(2w̃ −w[k])
6: ỹ = z− prox 1

µ2
P [ z ]

7: y[k+1] = αỹ + (1− α)y[k]

8: w[k+1] = αw̃ + (1− α)w[k]

9: end for

Then, Eq. (21) can be rewritten with a compact notation:

Minimize
w

I(w) + P(Xw). (27)

Since this form is the same as Eq. (8), the PDS algorithm in
Eq. (11) can be applied at least as a procedure.

B. PDS Algorithm for Determined BSS

Direct application of the PDS algorithm to Eq. (27) obtains
Algorithm 1. To realize BSS with this algorithm, two proximity
operators, proxI and proxP , must be evaluated.

It is known that the proximity operator of an orthogonally
invariant function can be evaluated by applying the correspond-
ing proximity operator to the singular values of the inputted
matrix [36]. By regarding − log σn in Eq. (26) as − log |σn|, the
proximity operator of I(w) is obtained [37]:

proxμI [w] = [(proxμ˜I [w[1]])T, . . . , (proxμ˜I [w[F ]])T]T,
(28)

where proxμ˜I is the following proximity operator that moder-
ately increases the singular values of mat(w[f ]),

proxμ˜I [w[f ]] = vec(U[f ] Σ̃(mat(w[f ]))V[f ]H), (29)

W[f ] = U[f ]Σ[f ]V[f ]H is the singular value decomposition
of W[f ] (= mat(w[f ])), Σ̃(·) is the diagonal matrix,

Σ̃(W) = diag(prox−μ log[σ1(W)], . . . ,prox−μ log[σN (W)]),
(30)

whose diagonal elements comprise the modified singular values
given by applying the proximity operator of −μ log [37],

prox−μ log[σ ] =
(
σ +

√
σ2 + 4μ

)
/2, (31)

and diag is the operator constructing a diagonal matrix from
inputted scalars. In other words, applying the proximity operator
of −μ log to each singular value of W[f ] gives proxμI [·] as
shown in Algorithm 2, where svd(·) denotes the singular value
decomposition. This operation is numerically stable because
it does not excessively magnify ‖w‖2 in contrast to the MM
algorithms [13], [14] that involve inversion of the matrices,
which may lead to instability.

Note that the matrix,X, is defined only for the formulation and
is unnecessary for the implementation [47]. This is because the
matrix-vector multiplications, Xw and XHy, can be algorith-
mically computed as shown in Algorithm 3 and 4, respectively,
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Algorithm 2: Computation of proxμ1I [w].

1: Input: w, μ1

2: Output: w̃
3: for f = 1, . . . , F do
4: [U,Σ,V] = svd(mat(w[f ]))

5: Σn,n = (Σn,n + (Σ2
n,n + 4μ1)

1
2 )/2 ∀n

6: w̃[f ] = vec(UΣVH)
7: end for

Algorithm 3: Computation of Xw.
1: Input: X, w
2: Output: ŝ
3: ŝ[t, f ] = mat(w[f ])x[t, f ] ∀t, f

Algorithm 4: Computation of XHy.
1: Input: X, y
2: Output: w′ [whose (n,m, f)th element is W ′

n,m[f ]]

3: W ′
n,m[f ] =

∑T
t=1 yn[t, f ]xm[t, f ] ∀n,m, f

where the overline in Algorithm 4 denotes complex conjugation.
Since the matrix, X, is given by copying the same components
as in Eq. (23), avoiding its construction can reduce the required
amount of memory.

Algorithm 1 can be applied to many BSS models by only
changing proxP/μ2

[·] in the 6th line. For example, an algo-
rithm for FDICA is obtained by inserting the soft-thresholding
operator in Eq. (14), while that for IVA is obtained by the
group-thresholding operator in Eq. (15). Thus, Algorithm 1 can
be used to test performance of BSS models without effort on
modifying the code whenever the proximity operator of P is
computable. A source model consisting of two or more penalty
functions can also be easily handled by this PDS algorithm (see
Section 3.4 and Algorithm 2 of [45] for details).

C. Some Notes on Practical Issues

In this paper, as explained in Section II-A, the inequality
condition in Eq. (12) is applied for setting μ1 and μ2. To do
so, ‖X‖2s must be calculated. This can be easily done by using
an iterative algorithm that computes the largest singular value
of X. Since ‖X‖2s = ‖XHX‖s, applying an iterative method
(e.g., the power method) to XHX instead of X can reduce the
computational cost.

To make the choice of the parameters simpler, the following
normalization is considered in this paper:

X̃ = X/ ‖X‖s . (32)

Then, the rule for choosing the step sizes can be simplified as

μ1μ2 = 1. (33)

Therefore, with the above normalization, the number of pa-
rameters can be reduced by setting μ2 = 1/μ1. Note that a
computationally cheaper norm can be used in place of ‖X‖s

to upper bound the data matrix, ‖X̃‖2s ≤ 1. Typical choices are
1-norm, ∞-norm, and max norm because they can be quickly
computed by comparison of the elements.

The whitening of the observed data [2] is strongly recom-
mended for Algorithm 1. This is because w[k] − μ1μ2X

Hy[k]

in the 4th line updates the demixing filter, w, in a step-by-
step manner like a gradient descent method (see Section IV-C
for some intuition). The whitening can act as preconditioning
that accelerates the optimization algorithms. In addition, it can
normalize the level of the observed signals, and therefore the
whitening makes it easier to set a parameter that depends on
the scale of the signals, such as λ in Eq. (15). This paper will
consider the whitening as default.

As usual, the scales of the separated signals cannot be
uniquely determined. To align the frequency-wise scales, post-
processing based on the minimal distortion principle, called back
projection [48], is used in this paper.

IV. GENERAL TIME-FREQUENCY MASKING AS A HEURISTIC

SUBSTITUTE OF THE PROXIMITY OPERATOR

In this section, the proximity operator in Algorithm 1 is
substituted by a time-frequency-masking function [46]. This
modification enables us to design a variety of BSS methods
without derivation of the corresponding algorithms.

A. Generalized Thresholding/Shrinkage Operators

The proximity operators of several sparsity-inducing penalty
functions can be computed analytically as in Eqs. (14) and (15).
However, this is not the case for many other functions. Although
there are some formulas that allow computation of a proximity
operator from already known ones, e.g. [49],

proxλ1‖·‖2,1+λ2‖·‖1 [z] = proxλ1‖·‖2,1 [ proxλ2‖·‖1 [z] ], (34)

applicability of such easy-to-use formula is limited to a specific
class of penalty functions [50]–[52]. Thus, one has to run an
additional iterative algorithm to compute a proximity operator
that cannot be written in a closed form. This can be regarded
as a trade-off between flexibility and computational efficiency
because types of proximity operators that can be written in closed
forms do not have much variety.

To circumvent such trade-off, the generalized thresholding
focuses on closed-form (or cheaply computable) operators by di-
rectly defining a thresholding/shrinkage operator without defin-
ing the corresponding penalty function [53]–[57]. For example,
the p-shrinkage operator [54], defined as

(
T λ
p [z]

)
n
[t, f ] =

(
1− λ2−p

|zn[t, f ]|2−p
)
+

zn[t, f ], (35)

corresponds to some penalty function that does not have an
explicit formula for general p. That is, this shrinkage operator
defines an implicit model that induces sparsity.3

3An element-wise function (T [z])n= a(|zn|) sign(zn) is the proximity op-
erator of some function that may not have closed-form expression. The condition
for T to be a proximity operator is that a is non-decreasing, a(|zn|) → ∞ as
|zn| → ∞, and 0 ≤ a(|zn|) ≤ |zn| [55]. This fact motivated us to consider the
time-frequency masking in Section IV-B.



1614 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 1. Soft-thresholding and its mask. The soft-thresholding operator shown
on the left (solid line) corresponds to the mask in Eq. (38) shown on the right
(solid line). The dashed lines represent the identity operator for a reference.

Another example is one of the social sparsity operators [53],

(
T λ
h [z]

)
n
[t, f ] =

(
1− λ

(h ∗ |zn[t, f ]|2)
1
2

)
+

zn[t, f ], (36)

where h∗ represents the convolution with a two-dimensional
filter kernel h, whose elements are non-negative, in the time-
frequency domain. Although its effectiveness has been empir-
ically shown [53], this operator is not a proximity operator
of some function in general [58]. That is, the social sparsity
operator goes beyond the proximity operator and realizes an
efficient algorithm with a flexible implicit signal model.

B. Determined BSS Based on Time-Frequency Masking

The soft- and group-thresholding operators [in Eqs. (14) and
(15)] and the generalized thresholding/shrinkage operators [in
Eqs. (35) and (36)] can be summarized as follows,(

T λ[z]
)
n
[t, f ] =

(
M(z)

)
n
[t, f ] zn[t, f ], (37)

where 0 ≤ (M(z))n[t, f ] ≤ 1 is a non-negative scalar that
depends on the input, z. This process can be interpreted as
time-frequency masking using a data-dependent mask M(z).
For instance, the soft-thresholding operator in Eq. (14) is the
time-freuqency masking using the following mask:

(
Mλ

�1
(z)

)
n
[t, f ] =

(
1− λ

|zn[t, f ]|

)
+

, (38)

which is illustrated on the right side of Fig. 1. Similarly, the
group-thresholding operator in Eq. (15) uses

(
Mλ

�2,1
(z)

)
n
[t, f ] =

(
1− λ

(
∑F
f=1 |zn[t, f ]|2)

1
2

)
+

(39)

as the mask. This observation leads us to an idea of substituting
a general time-frequency mask into the PDS algorithm so that
the mask defines an implicit source model.

By heuristically substituting a time-frequency mask for the
proximity operator, Algorithm 1 is extended as Algorithm 5,
where � denotes the element-wise product, and θ represents a
set of parameters for generating the mask. Although stability
and convergence of the algorithm with a general mask can be
investigated only by experiments, testing several algorithms is
easy because the only effort for rewriting the code is in the 6th
line. One can just insert a masking method into the algorithm and
run it for checking the performance. Any thresholding function
and/or sound enhancement method based on time-frequency

Algorithm 5: PDS-BSS-Masking [46].

1: Input: X, w[1], y[1], μ1, μ2, α
2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxμ1I [ w

[k] − μ1μ2X
Hy[k] ]

5: z = y[k] +X(2w̃ −w[k])
6: ỹ = z−Mθ(z)� z
7: y[k+1] = αỹ + (1− α)y[k]

8: w[k+1] = αw̃ + (1− α)w[k]

9: end for

masking can collaborate with determined BSS through this
algorithm, and hence tremendous flexibility is brought by
Algorithm 5.

This heuristic generalization is closely related to the plug-
and-play scheme [40]–[42]. By regarding the definition of the
proximity operator in Eq. (13) as the negative log-likelihood, it
can be viewed as a maximum a posteriori (MAP) estimator with
a prior distribution C exp(−P(·)) as follows [40]:

proxλP [z] = argmax
ξ

[
e−

1
2λ

‖z−ξ‖22 e−P(ξ)
]
. (40)

This interpretation suggests that substituting a general Gaussian
denoiser, that approximately solves Eq. (40), in place of the
proximity operator results in an algorithm that works as if
the (implicit) function P is minimized [40]–[42]. When the
underlying penalty function is a sum of the penalty functions
corresponding to each source (P =

∑N
n=1 Pn), the algorithm

can be interpreted as an independence-based BSS method (ML
estimation) with C exp(−Pn(·)) being the density function of
the nth source signal [1]. In this sense, Algorithm 5 recasts the
BSS problem into the denoising problem in Eq. (40) with the
same prior distribution of the sources.

Note that a BSS algorithm beyond the independence-based
framework can also be realized with Algorithm 5, at least
as a procedure, by inserting a mask that is not separable for
each source. The independence assumption leads to the BSS
problem in Eq. (3) whose source model is given by a sum of the
penalty functions. This is because each source is assumed to be
independent from the others, i.e., the source model cannot use
information from the other sources to separate a source signal.
Then, the corresponding masking functions are also separately
applied to each signal without consideration of the others. This
is a disadvantage of the independence-based framework because
full information on all signals cannot be used. In contrast, Al-
gorithm 5 allows us to use a mask that simultaneously considers
all signals. We will propose such a non-separable mask in the
next section to obtain HVA.

C. Intuitive Interpretation of the Proposed Algorithm

To obtain a better intuition of the working principle, each
line of Algorithm 5 is roughly explained. For convenience of
explanation, we start it from the 6th line.

The 6th line calculates difference between the auxiliary vari-
able, z, and its masked version, Mθ(z)� z. Note that the
time-frequency masking is applied to spectrograms, and hence
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z is some sort of (vectorized) spectrograms. The difference,
ỹ, contains information about how the masking changed the
variable, z. This information is carried to the 4th line via the 7th
and 8th lines. Since the 7th and 8th lines are weighted averages
with variables in the previous iterate, they are merely controllers
of speed of the update. Therefore, the essential information on
the difference, ỹ, is not changed by the 7th line and is brought
to the 4th line.

The 4th line is the composition of three operations: multipli-
cation ofXH, subtraction fromw[k], and application ofproxμ1I .
The multiplication of XH converts the information on masking
contained in y[k] to the domain of the demixing filters, w[k].
Then, the subtraction updates the demixing filters based on that
information. Since y[k] is obtained by the difference between
the variables before and after masking, it can be regarded as
something similar to gradient that informs the effect of masking.
In this sense, the subtraction, w[k] − μ1μ2X

Hy[k], updates the
demixing filter, w[k], like the gradient descent method. It is also
updated by proxμ1I to avoid the undesired result, e.g.,w[k] = 0.

The information on updated demixing filter, w̃, is reflected
in the auxiliary variable, z, by the 5th line. For convenience
of explanation, this line is rewritten as z = Xw̃ + [Xw̃ −
(Xw[k] − y[k])]. The first term, Xw̃, is the result of filtering
applied to the observed data, X, i.e., separated sources. This
filtered signal is modified by the addition of the later terms.
The subtraction of the last two terms, Xw[k] − y[k], is similar
to that in the 4th line, w[k] − μ1μ2X

Hy[k], but is performed
in the domain of the auxiliary variable, y. By subtracting it
from Xw̃, the effect of the domain difference and proxμ1I is
obtained as [Xw̃ − (Xw[k] − y[k])]. This effect is added toXw̃
and handled by the auxiliary variable, z. Therefore, the input of
the masking, z, consists of not only the separated result for that
iteration, Xw̃, but also the mismatch between the domains. This
involved structure allows us to consider the masking separately
from the demixing filter update.

D. Relation to the Model-Based IVA

Here, relation between Algorithm 5 and the model-based
IVA [59] is discussed. The model-based IVA is an extension of
IVA that utilizes a single-channel enhancement method to define
an implicit source model. By considering the time-frequency-
variant Gaussian distribution as the source model, with variance
vn[t, f ], the penalty function corresponding to the model-based
IVA can be written as a weighted �2 norm,

Pn(y[t, f ]) = C ‖yn[·, ·]‖22,v = C

T∑
t=1

F∑
f=1

|yn[t, f ]|2
vn[t, f ]

, (41)

which penalizes a time-frequency bin with small vn[t, f ] more
than that with large vn[t, f ]. This variance is chosen as vn[t, f ] =
|x̂n[t, f ]|2, where x̂n[t, f ] is a (roughly) separated signal es-
timated by some single-channel source enhancement method
(e.g., spectral subtraction applied to a mixture signal observed
by one of the channels [59]).

As its proximity operator is the shrinkage operator [36],

(
prox λ

2 ‖·‖
2
2,v

[z]
)
n
[t, f ] =

(
vn[t, f ]

vn[t, f ] + λ

)
zn[t, f ], (42)

the model-based IVA can also be handled by Algorithm 5
via the mask, (M(z))n[t, f ] = vn[t, f ]/(vn[t, f ] + λ), which
is independent of the inputted variable z (i.e., constant for every
iteration). Although the two methods are related in terms of
using a general time-frequency masking method for estimating
the demixing matrix, the model-based IVA utilizes the mask
only once, before starting iteration, to calculate the weight,
vn[t, f ] = |(M(x))n[t, f ]xn[t, f ]|2. In contrast, the proposed
algorithm uses the mask within the iteration by updating it based
on the inputted variable at that time. Therefore, the model-based
IVA can be regarded as a special case of the proposed masking-
based BSS framework.

V. HARMONIC VECTOR ANALYSIS (HVA): A NOVEL BSS
METHOD BASED ON THE HARMONIC STRUCTURE

As an application of Algorithm 5, a BSS method named
HVA is proposed in this section. It is based on some ideas
novel for determined BSS, including cepstrum thresholding,
non-separable masking, and cosine shrinkage operator.

A. Harmonic Structure of Audio Signals

In HVA, the harmonic structure is considered as the basis of
the mask generation. As an illustrative example of the harmonic
structure, a log-amplitude spectrum of a voiced segment of a
speech signal is shown on the left side of Fig. 2. The periodic
repetition of the peaks and dips is called harmonic structure and
is typical of real-world audio signals. That is, in a short-time
segment of a typical source signal, multiple peaks (or harmonic
components) simultaneously occur. This co-occurrence of the
harmonic components should be useful for resolving the per-
mutation problem and separating the source signals because a
prominent peak can inform the positions of the other peaks.

To incorporate this prior knowledge into determined BSS
based on Algorithm 5, a time-frequency masking method should
be designed so that the harmonic components are enhanced
compared to the other components. In HVA, this is realized by
two ideas that are new to determined BSS: cepstrum thresholding
and a Wiener-like mask.

B. Cepstrum Thresholding Enhancing the Harmonic Structure

One of the well-accepted concepts related to the harmonic
structure is cepstrum. When a log-amplitude spectrum exhibits
the harmonic structure, it can be well-approximated by a few
Fourier-series coefficients because of the periodic repetition. To
capture such property, cepstrum is defined as the Fourier trans-
form of a log-amplitude spectrum.4 By denoting the element-
wise absolute value as (abs(z))n[t, f ] = |zn[t, f ]|, cepstrum of a
multi-channel signal, cep(z), for all time segments and channels
can be written as

(cep(z))n[t, c] = (Ff (log(abs(z))))n[t, c], (43)

4In the literature, cepstrum may be defined by the inverse Fourier transform
of a log-amplitude spectrum. Such difference is not important for HVA since
the cepstrum thresholding does not depend on the phase difference.
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Fig. 2. Typical example of a voiced speech signal and its enhancement by the cepstrum (hard-)thresholding. The log-amplitude spectrum of a segment of voiced
speech (leftmost) is converted to cepstrum (second from the left) by the Fourier transform. By thresholding the cepstrum coefficients (second from the right) and
taking the inverse Fourier transform, the enhanced version of the log-amplitude spectrum is obtained (rightmost) as described in Section V-B.

where log(·) is the element-wise logarithmic function, Ff is the
(normalized) frequency-directional Fourier transform,

(Ff (z))n[t, c] =
1

F

F∑
f=1

zn[t, f ] e
−2πi(c−1)(f−1)/C , (44)

and c = 1, . . . , C is the index of quefrency. Note that zero-
padding can be used to make C > F , which might improve
the performance because of higher redundancy.

By introducing a Fourier thresholding operator T λ
F as

T λ
F (z) = F−1

f (T λ
sp(Ff (z))), (45)

we define the cepstrum thresholding that applies a sparsity-
inducing operator in the cepstrum domain:

T λ
cep(z) = exp(T λ

F (log(abs(z)))), (46)

where exp(·) is the element-wise exponential function, F−1
f is

the frequency-directional inverse Fourier transform,

(F−1
f (z))n[t, f ] =

F

C

C∑
c=1

zn[t, c] e
2πi(c−1)(f−1)/C , (47)

and T λ
sp is a sparsity-promoting thresholding operator, e.g., the

soft-thresholding operator in Eq. (14) or the p-shrinkage opera-
tor in Eq. (35).

The effect of the cepstrum thresholding is shown on the
right side of Fig. 2, where the hard-thresholding was chosen
as the cepstrum-domain thresholding operator, T λ

sp, for clear
demonstration. The cepstrum of the log-amplitude spectrum
contains some larger peaks that correspond to the harmonic
components. The other small cepstrum coefficients correspond
to the non-structured details. By removing small cepstrum coef-
ficients and retaining larger coefficients using hard-thresholding,
the harmonic structure is enhanced as in the rightmost figure.
For mixture signals, the cepstrum thresholding enhances the
dominant signal having harmonic structure and attenuates the
other components. We expect that, for each channel, such at-
tenuation principally occurs to the interference signals that have
less energy than the main signal.

C. Non-Separable Masking for Source Separation

Based on a set of enhanced signals, a mask is constructed and
applied in Algorithm 5. Ordinarily, the independence criterion
has forced a BSS algorithm to be a procedure separable for each

source signal. In contrast, it is also possible to define a non-
separable BSS method that simultaneously considers all source
signals to extract separation cues. Algorithm 5 can realize such
method by using a non-separable mask-generating function, for
example, the Wiener-like mask [60]:

(MWL(x̂))n[t, f ] =

(
|x̂n[t, f ]|2∑N
n=1 |x̂n[t, f ]|2

)γ
, (48)

which takes values between 0 and 1, where x̂n[·, ·] is the en-
hanced spectrogram corresponding to the nth source signal, and
γ > 0 is a parameter adjusting the level of attenuation. Note
that, when γ = 1, this mask can be viewed as a non-separable
version of the mask in Eq. (42), which is related to the time-
frequency-variant Gaussian model, by replacing the constant λ

in the denominator of Eq. (42) with the sum of the other source
signals,

∑
l 
=n |x̂l[t, f ]|2.

This non-separable mask is more effective for promoting
source separation than ordinary separable masks because it
simultaneously uses information on all signals and encourages
each bin to be more exclusive and unmixed.

D. Harmonic Vector Analysis (HVA)

We propose HVA by defining a specific mask that uses the
harmonic structure for enhancing the source signals. It is a com-
bination of the cepstrum thresholding and Wiener-like masking
introduced in the previous subsections:

(Mλ,κ
HVA(z))n[t, f ] =

(
υz,λ,κ,εn [t, f ]∑N
n=1 υ

z,λ,κ,ε
n [t, f ]

)γ
, (49)

where υz,λ,κ,εn [·, ·] is a squared amplitude spectrogram whose
harmonic structure is enhanced by the cepstrum thresholding
[corresponding to |x̂n[·, ·]|2 in Eq. (48)].

The cepstrum thresholding in Eq. (46) is composition of
exp, T λ

F , log and abs. Therefore, υz,λ,κ,εn [·, ·] in Eq. (49) is
explained in this order. By applying the exponential function
to a thresholded log-amplitude spectrogram, �z,λ,κ,εn [·, ·], and
squaring it, υz,λ,κ,εn [·, ·] is obtained as follows:

υz,λ,κ,εn [t, f ] = exp(2�z,λ,κ,εn [t, f ]), (50)

where 2 comes from the squaring in Eq. (48). The thresholded
log-amplitude spectrogram, �z,λ,κ,εn [·, ·], is given by Fourier
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Fig. 3. Cosine shrinkage and its mask for λ = 4 and κ ∈ {1, 2, 3, 4, 5}. The
cosine shrinkage operator in Eq. (54) (solid line) is shown on the left with
the hard-thresholding operator (dashed line). The corresponding masks (the
composition of raised cosine functions drawn by solid lines, and the step function
drawn by dashed line) are shown on the right.

thresholding, T λ,κ
F (·) = F−1

f (T λ,κ
sp (Ff (·))), applied to mean-

subtracted log-amplitude spectrograms, ρz,ε, as follows:

�z,λ,κ,εn [t, f ] = (T λ,κ
F (ρz,ε))n[t, f ] + μz,ε

n [t], (51)

where ρz,ε is obtained by subtracting time-dependent mean,

ρz,εn [t, f ] = log(|zn[t, f ]|+ ε)− μz,ε
n [t], (52)

μz,ε
n [t] is the mean value of the log-amplitude spectrum,

μz,ε
n [t] =

1

F

F∑
f=1

log(|zn[t, f ]|+ ε), (53)

and ε > 0 is a small constant for preventing ρz,εn [t, f ] to be
−∞. Mean subtraction is performed in Eq. (52) to make the
cepstrum coefficients sparser. It also has another benefit that
adding the mean value after the thresholding as in Eq. (51) can
restore the level of log-amplitude. Therefore, the Wiener-like
mask can enhance the level difference of the signals even when λ

is exceedingly large and the thresholder eliminates all cepstrum
coefficients.

For the cepstrum-domain operator, T λ,κ
sp , included in T λ,κ

F ,
any sparsity-promoting operator can be adopted. In this paper,
we newly propose the following operator, which is named cosine
shrinkage operator, for the enhancement:

(T λ,κ
cos (z))n[t, c] = Ξκ[(|zn[t, c]|/(2λ))1] zn[t, c], (54)

where Ξκ is κ-times composition of Ξ (i.e., Ξκ = Ξ ◦ · · · ◦ Ξ),

Ξ [zn[t, c]] = (1− cos(πzn[t, c]))/2, (55)

and (·)1 = min{1, ·}. For intuitive explanation, it is illustrated
in Fig. 3 with the corresponding mask, Ξκ[(|zn[t, c]|/(2λ))1].
The mask (on the right side of Fig. 3) consists of the half period
of (raised) cosine function, where λ is its inflection point. This
can be viewed as a smooth approximation of the mask corre-
sponding to the hard-thresholding operator (red dashed line),
and the degree of approximation is controlled by κ. Hence, T λ,κ

cos

is a smooth approximation of the hard-thresholding operator
as on the left side of Fig. 3. The reasons why this shrinkage
operator is adopted in HVA are as follows: (1) it has no bias for
large coefficients similar to hard-thresholding; (2) we found that
smoothness is important for stable separation; and (3) HVA does
not require to force small coefficients to be exactly zero owing

Algorithm 6: Harmonic Vector Analysis (HVA).

1: Input: X, w[1], y[1], μ1, μ2, α
2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxμ1I [ w

[k] − μ1μ2X
Hy[k] ]

5: z = y[k] +X(2w̃ −w[k])
6: ỹ = z−Mλ,κ

HVA(z)� z
7: y[k+1] = αỹ + (1− α)y[k]

8: w[k+1] = αw̃ + (1− α)w[k]

9: end for

Algorithm 7: Computation of Mλ,κ
HVA(z).

1: Input: z, λ, κ
2: Output: Mλ,κ

HVA(z)
3: ζ = log(abs(z) + ε)

4: μn[t] = (1/F )
∑F

f=1 ζn[t, f ] ∀n, t
5: ρn[t, f ] = ζn[t, f ]− μn[t] ∀n, t, f
6: ν = Ff (ρ)
7: ςn[t, c] = min{1, |νn[t, c]|/(2λ)} ∀n, t, c
8: for k = 1, . . . , κ do
9: ςn[t, c] = (1− cos(πςn[t, c]))/2 ∀n, t, c

10: end for
11: ξ = F−1

f (ς � ν)
12: �n[t, f ] = ξn[t, f ] + μn[t] ∀n, t, f
13: υn[t, f ] = exp(2�n[t, f ]) ∀n, t, f
14: (Mλ,κ

HVA(z))n[t, f ] =(
υn[t, f ]/

∑N
n=1 υn[t, f ]

)γ ∀n, t, f

to the Wiener-like mask. Note again that any thresholding-like
function can be used in place of this shrinkage operator. The
performance of HVA depends on its choice, and some other
thresholding/shrinkage operator that performs better for HVA
than the cosine shrinkage operator should exist.

The proposed algorithm for HVA is shown in Algorithm 6.5

For assisting implementation, the mask-generating function,
Mλ,κ

HVA(·) in the 6th line, is also summarized in Algorithm 7.
The subtraction and addition of the mean value, μz,ε

n [t], in the
5th and 12th lines, respectively, maintain the energy of the
squared amplitude spectrograms, υz,λ,κ,εn [·, ·], similar to that of
the input spectrogram, |zn[·, ·]|2. The (frequency-directional)
Fourier transform, Ff in the 6th line, converts the log-amplitude
spectrum into cepstrum, and its inverse, F−1

f in the 11th line,
does the opposite. The mask of the cosine shrinkage operator
(the right figure of Fig. 3) is denoted by ς and is applied to
the cepstrum coefficients, ν, as ς � ν in the 11th line. The
exponential in the 13th line cancels the logarithm in the 4th
line, and the 14th line computes the Wiener-like mask. Note
that ςn[t, c] = 1when λ = 0. That is,υn[t, f ] = |zn[t, f ]|2 when
λ = 0 (and ε = 0).

To reduce the number of parameters, ε is fixed and omitted
fromMλ,κ

HVA because, according to our preliminary investigation,
its effect to the performance is not notable (ε is set to 10−3 in the

5Our MATLAB implementation is available at [47].
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Fig. 4. Whitened spectrograms and masks of HVA. The upper row shows a
log-amplitude spectrogram of a speech mixture (right) together with its source
signals (left and center). The color range is 60 dB. Due to the frequency-wise
whitening, the signal-to-noise ratio seems different for each frequency. The
bottom row shows the masks of HVA (with different λs) calculated from the (top
right) mixture. The color range is set to [0.55, 0.85] for enhancing the visibility
(note that γ = 1/N makes the average around 0.7, and therefore 0.7± 0.15
was chosen for the range). These masks correspond to the 1st iteration of HVA
(see Fig. 5 for similar masks with color range [0, 1]).

rest of the paper). We also heuristically fix γ to 1/N in this paper
based on the following reason. When υz,λ,κ,εn [t, f ] is the same
for all n, the value inside the parentheses of Eq. (49) is 1/N ,
which depends onN . By setting γ = 1/N , the value of the mask
for that case becomes (1/N)(1/N) ≈ 0.7 that is approximately
independent of N . Therefore, to avoid decrease in the average
value of the mask,γ = 1/N is chosen tentatively. 6 The other two
parameters, λ and κ, should be chosen based on the distribution
of the cepstrum coefficients of the observed signals, which will
be investigated in the experimental section.

E. Role of the Cepstrum Thresholding in HVA

For demonstration of the mask of HVA, some examples are
shown in the bottom row of Fig. 4. Each figure illustrates one of
the 2-channel signals/masks, and the corresponding masks for
the other channel are not shown here.

The bottom-right figure shows the mask without cepstrum
thresholding (i.e., λ = 0). Note that the non-separable mask
itself can promote separation if, for each time-frequency bin,
level difference between the channels exists, because the mask
retains louder components and attenuates smaller components.
Therefore, the mask in the bottom-right figure is not totally
random but exhibits some structure. However, this mask cannot
solve the permutation problem because each frequency is treated
independently.

6We empirically found that the algorithm becomes unstable when the average
value of the mask is small. This should be because the PDS algorithm is built
upon the proximity operator that has restriction on the amount of change of the
signal. To reduce the amount of change caused by the masking, the values of
the mask should be close to 1. Therefore, we chose (1/N)(1/N) ≈ 0.7 that is
relatively close to 1. Although we chose (·)γ for the definition of the Wiener-like
mask in Eq. (48) because it seems popular in the literature of time-frequency
masking, any function that controls the distribution of the value of the mask can
be used in place of (·)γ . Investigation of such function that performs better than
(·)γ can be a part of future works.

Fig. 5. Whitened spectrograms and masks for the first 5 iterations of HVA.
The parameters of HVA were set to α = μ1 = μ2 = 1, λ = 0.08, and κ = 3.
The signal is Mixture A in Fig. 6. Therefore, these spectrograms and masks
correspond to the top central figures in Figs. 9 and 10. The color range for the
whitened spectrograms is 60 dB, and that for the masks is [0,1].

The cepstrum thresholding assists the non-separable mask
by enhancing the dominant periodic pattern corresponding to
the harmonic structure. Since the cosine shrinkage operator
attenuates cepstrum coefficients that are small relative to the
parameter λ, a larger λ gives a simpler mask that can be well-
described by fewer sinusoidal patterns. These examples show
that the cepstrum thresholding is not intended to separate some
components but just enhancing the harmonic structure. Note
that subtraction of the mean value, μz,ε

n [t], in the logarithmic
domain normalizes the time-segment-wise scale of the input
spectrogram because log(abs(cz)) = log(abs(z)) + log(c) for
any positive constant c > 0. Therefore, the shrinkage parameter,
λ, can be chosen without a care of the scale of the observed
signals.

For further demonstration, the mask of HVA for each iteration
is shown in Fig. 5. This figure is visualization of the first 5
iterations of the experimental result (α = μ1 = μ2 = 1, Mixture
A) in Section VI-B. At the 1st iteration, the masks seem some-
what random because the cepstrum thresholding was performed
for each time segment independently. Then, the update of the
demixing filter collects the information of the mask for all time
segments via XHy (see Algorithm 4). By using the updated
demixing filter, each signal was enhanced, which made the
cepstrum thresholding able to adapt to the spectral patterns better
in the later iterations. As can be seen in the figure, the mask
rapidly captured the spectral patterns in the first few iterations.

Since the cepstrum thresholding simultaneously processes
all frequency components, the mask exhibited vertical patterns.
That is, the effect of the demixing filer at some frequency prop-
agates vertically to all the other frequencies. Such masks that
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Fig. 6. Recording conditions of the 2-channel speech mixtures utilized in the
experiments in Sections VI-A and VI-B using the Laplace IVA.

simultaneously handle all frequencies can solve the permutation
problem to some extent. Note that, since this paper considers the
time-invariant model in Eq. (1), permutation across the time does
not occur. If the cepstrum thresholding is used in a time-varying
situation, the permutation across the time should be treated by
some additional technique.

VI. EXPERIMENTS

In this paper, we presented the general BSS algorithm and
its specific application termed HVA. To show the properties of
both the algorithm and HVA, some experiments are conducted
in this section. At first, the properties of the algorithm and HVA
are qualitatively shown using two 2-channel speech mixtures
as examples. Then, the performances of HVA over speech and
music mixtures in 2- and 3-channel conditions are compared
with IVA and ILRMA quantitatively.7

The performance was measured by the standard metrics: the
source-to-distortion ratio (SDR), source-to-interferences ratio
(SIR), and sources-to-artifacts ratio (SAR) [62]. For all trials,
the initial value of the demixing matrices w[1] was set to the
identity matrices (W[f ] = I for all f ), and that of y was the
zero vector. The sampling rate of the signals was 16 kHz. The
window length was set according to the previous studies for
easier comparison.8 The whitening [2] and back projection [48]
were applied as pre- and post-processes, respectively.

A. Illustration of Basic Properties of the PDS Algorithm

The PDS algorithms contain three parameters μ1, μ2, and
α. At first, their effects to the performance over iteration are
presented using the well-understood IVA. Two pairs of female
speech signals recorded as in Fig. 6 were downloaded from
SiSEC database [64] (liverec of dev1 in the underdeter-
mined audio source separation task), where the reverberation
time was 130 ms. The half-overlapping 2048-point-long Hann
window (128 ms) was used for the short-time Fourier transform
(STFT). The BSS method tested here was IVA based on the

7An audio example for Section VI-C is available at [61].
8The window length determines the degree of freedom of the demixing filter.

Therefore, the ideal separation performance is higher when the window length is
longer. However, a longer window results in more optimization variables, which
makes the optimization more difficult. Moreover, the window length determines
the appearance of the spectrogram, which makes the characteristics of the source
model different. Because of these factors, the relation between the window length
and separation performance is very complicated as indicated in [63]. In this
paper, we decided to follow the previous studies for the window length so that
such complication is avoided.

Fig. 7. SDR/SIR/SAR of the signals separated from the mixtures (recorded as
in Fig. 6) using Laplace IVA (Section VI-A1). The two sources in each mixture
are distinguished by the markers (o and x). The left and right figures were
obtained by auxIVA [13] and the proposed algorithm (Algorithm 1), respectively.
The parameters were set to μ1 = μ2 = 1 and α = 1.75.

spherical Laplace distribution, Pn = ‖ · ‖2,1 in Eq. (5), whose
proximity operator is given in Eq. (15). Note that the mixture
signals contain ambient noise of the room.

1) Appropriateness of the PDS Algorithm: Before showing
the effects of parameters, the PDS algorithm was compared
with the MM algorithm (auxIVA [13]), based on the iterative
projection technique [8], to confirm that the Laplace IVA was ap-
propriately realized by the PDS algorithm. Their performances
over iteration are shown in Fig. 7, where the parameters were
set to μ1 = μ2 = 1, and α = 1.75. As in the figure, both al-
gorithms resulted in the same scores, which indicates that the
PDS algorithm was properly working, but the PDS algorithm
required more iterations than the MM algorithm. In particular,
Mixture B needed significantly more iterations, which should
be because it was obtained with a condition more difficult than
Mixture A, as in Fig. 6. Note that the computation per iteration of
IVA by the PDS algorithm was 1.3 times faster than IVA by the
MM algorithm (PDS: 26.7 ms, MM: 35.0 ms) which should be
because the MM algorithm calculates a lot of matrix inversions
within an iteration.

To see the appropriateness in terms of minimization, the
values of the objective function for the PDS algorithm are shown
in Fig. 8 with 3 different axes. They confirm that the proposed
algorithm properly reduced the objective function in Eq. (3)
with Pn = ‖ · ‖2,1 in Eq. (5). Note that, in general, this kind of
plot cannot be drawn for the proposed masking-based algorithm
because an explicit form of the objective function may not exist.

2) Effect of the Relaxation Parameter α: As mentioned in
Section II-A, the parameter α can speed up (2 > α > 1) or slow
down (1 > α > 0) the convergence of the algorithm. To illus-
trate such effect, the performances for differentα ∈ {0.5, 1, 1.5}
are shown in Fig. 9, where the other parameters were set to
μ1 = μ2 = 1. As expected, higher α achieved the scores at the
final iteration with less number of iterations (note that the case
for α = 1.75 is shown in Fig. 7). For the Laplace IVA, the
parameter α acted as a stretching factor of the horizontal axis.
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Fig. 8. Values of the objective function. With the penalty function in Eq. (5),
the objective function is given in Eq. (3). The setting was the same as that of
Fig. 7. The first 100 iterations of the left figure are closed up in the central figure.
The right figure shows the same curve in the logarithmic scale with some vertical
shift that made the value at the 1000th iteration 0.

Fig. 9. SDR/SIR/SAR of the signals separated from the mixtures in Fig. 6,
where the parameter α was varied (Section VI-A2).

Fig. 10. SDR/SIR/SAR of the signals separated from the mixtures in Fig. 6,
where the parameter μ1 was varied, and μ2 = 1/μ1 (Section VI-A3).

3) Effect of the Step-Size Parameters μ1 and μ2: As dis-
cussed in Section III-C, the data normalization in Eq. (32)
allows the choice μ2 = 1/μ1 for the step size, which comes
from Eq. (12). Since μ1 and μ2 balance the effects of proximity
operators (proxμ1I and prox 1

µ2
P in Algorithm 1), their choice

can also affect the convergence. By setting μ2 = 1/μ1 and
α = 1, the performances of the PDS algorithm were investigated
for μ1 ∈ {0.5, 1, 2} as illustrated in Fig. 10. From Figs. 9 and
10, a specific choice of the parameters (μ1, μ2 and α) seems to

Fig. 11. SDR/SIR/SAR of the signals separated from the mixtures in Fig. 6,
where the parameter α was varied (Section VI-B1).

have little impact on the separation performance for the Laplace
IVA if the number of iterations is sufficiently large. In contrast,
when the number of iterations is limited, these parameters may
have some impact on the performance.

B. Illustration of Basic Properties of HVA

As opposed to the Laplace IVA investigated in the previous
subsection, HVA does not rely on a theoretical foundation but
is heuristically defined by the time-frequency-masking function
in Eq. (49). In such cases, theoretically developed criteria like
Eq. (12) do not guarantee the convergence because their assump-
tion is not satisfied anymore. Therefore, the performance of HVA
as well as its dependency on the algorithmic parameters must be
investigated by experiments. Here, the effects of step-size and
relaxation parameters (μ1, μ2 andα) are qualitatively presented.
The experimental conditions are the same as those in the previous
subsection. The parameters of the cepstrum thresholding were
set to λ = 0.08 and κ = 3 based on the experimental results that
will be presented in the next subsection.

1) Effect of the Relaxation Parameter α: At first, the effect
of the relaxation parameter, α, on the performance of HVA
was investigated by fixing μ1 = μ2 = 1. The performances for
α ∈ {0.5, 1, 1.5} are shown in Fig. 11 (note that the range of
vertical and horizontal axes are greatly different from those in
Figs. 9 and 10). Since the mask of HVA might not be stable
compared to the proximity operator of a convex function, choice
of α affected the performance at the final iteration. For HVA,
α = 1 seems a reasonable choice because it resulted in stable
and fast improvement. If a masking function is more unstable, a
smaller α should be preferable for stabilizing the performance.

2) Effect of the Step-Size Parameters μ1 and μ2: The effect
of the step-size parameters μ1 and μ2 is also presented by fixing
α = 1 as in Fig. 12. From the results, it can be seen that the effect
of the choice of the step sizes on HVA is small. This should be
because the masking function of HVA in Eq. (49) is independent
of μ2. In general, such independence is not a favorable property
of a masking function because the balance of the algorithm can
collapse. Even so, HVA was able to stably perform separation.

3) Choice of the Parameters of HVA: Based on the above
experimental results, we suggest to choose the parameters of
HVA as μ1 = μ2 = α = 1. Since HVA is not so sensitive to μ1
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Fig. 12. SDR/SIR/SAR of the signals separated from the mixtures in Fig. 6,
where the parameter μ1 was varied, and μ2 = 1/μ1 (Section VI-B2).

and μ2, we suggest setting them to 1 so that their multiplication
can be omitted in the actual computation. Also, the 7th and 8th
lines of Algorithm 6 can be omitted in the actual computation
when α = 1.

The other parameters of HVA, λ and κ, will be investigated
in the next subsection. Overall, λ = 0.08 seems a good choice,
and κ = 3 seems slightly better than κ = 1 or 2.

C. Performance Evaluation of HVA Using Speech Signals

For evaluating the performance of the proposed HVA, it is
compared with the standard method, IVA, and the state-of-the-
art method, ILRMA. Here, we performed experiments using
speech mixtures by improving the experiments in [14].

1) Experimental Conditions: The database utilized in this
experiment was a part of SiSEC (the underdetermined audio
source separation task) [64]. The BSS methods were evaluated
using 2- and 3-channel speech mixtures. For the 2-channel
mixtures, 20 files (male3, male4, female3, and male4)
contained in dev1 and dev2 were utilized. They include live
recordings (liverec containing ambient noise) with the re-
verberation time 130 ms/250 ms and the microphone spacing
1 m/5 cm. The distances between the sources and the center of
the microphone array is 1 m. For each situation, all possible
pairs of the signals (out of 3 or 4) were selected to make the task
determined (N=M=2). As the result, 96 pairs for 20 situations
were generated.9

Similarly, for the 3-channel mixtures, 8 files in dev3 were
utilized. They include female/male speech with the reverberation
time 130 ms/380 ms and the microphone spacing 50 cm/5 cm.
The distances between the sources and the center of the micro-
phone array is 1 m. By selecting all possible 3-tuples from 4
signals to make the task determined (N=M=3), 32 mixtures
for 8 situations were generated.

The half-overlapping 4096-point-long (256 ms) Hann win-
dow was used for STFT as in [14]. All algorithms were iterated
200 times. The number of bases of ILRMA for each source was

9Note that, although [14] utilized the same dataset, its experiment only
contained 12 mixtures for 12 situations because the first two speech sources
(out of 3) were selected for each situation. In contrast, this paper utilized all
signals included in each situation by selecting all possible pairs of the signals.

Fig. 13. SDR improvements of the speech signals separated from 2-channel
mixtures. The experimental settings are explained in Section VI-C1, where α =
μ1 = μ2 = 1 and the number of iterations was 200. The central lines indicate
the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.

Fig. 14. SDR improvements of the speech signals separated from 3-channel
mixtures. The experimental settings are explained in Section VI-C1, where α =
μ1 = μ2 = 1 and the number of iterations was 200.

set to 2, which is suitable for speech signals as shown in [14]. The
parameters of HVA were set toα = μ1 = μ2 = 1,κ ∈ {1, 2, 3},
and λ ∈ {0.04, 0.08, 0.12, 0.16, 0.2}. HVA without cepstrum
thresholding (λ = 0) was also tested.

2) Results: The experimental results for the 2- and 3-channel
cases are summarized in Figs. 13 and 14, respectively. First
of all, HVA without cepstrum thresholding (λ = 0) could not
perform separation. As discussed in Section V-E, this is be-
cause the permutation problem cannot be solved only by the
non-separable mask. This result indicates the importance of the
cepstrum thresholding that simultaneously handles all frequency
components. From the figures, it can be seen that κ has less
impact than λ. On average, (λ, κ) = (0.08, 3) seems to perform
well, and therefore we will focus on HVA with λ = 0.08 and
κ = 3.
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TABLE I
MUSIC SIGNALS FOR THE 2-CHANNEL MIXTURES [64]

TABLE II
MUSIC SIGNALS FOR THE 3-CHANNEL MIXTURES [64]

The figures show that the proposed HVA outperformed IVA.
This result indicates that the harmonic structure can be a useful
cue for the separation in determined BSS. Compared to ILRMA,
HVA achieved performance similar to ILRMA for the 3-channel
case but outperformed it for the 2-channel case. While ILRMA
utilizes repetition of the spectral pattern with time as a cue for
separation, HVA only focuses on the spectral pattern at each time
segment independently, as illustrated in Fig. 4. Since spectral
patterns of speech signals widely vary with time, the low-rank
structure (or repetitive pattern) of the magnitude spectrogram,
assumed in ILRMA, may not effectively serve as a separation cue
in this case. In contrast, HVA is not hindered by such variation of
signals because HVA considers time-independent information
like IVA. An audio example for each method can be found
in [61].

D. Performance Evaluation of HVA Using Music Signals

Here, the proposed HVA was tested using music mixtures by
following the experiments in [14].

1) Experimental Conditions: This experiment also used a
part of SiSEC (the professionally produced music record-
ings) [64]. The combinations of the source signals utilized in the
2- and 3-channel experiments are listed in Tables I and II, re-
spectively. Since tamy-que_pena_tanto_faz comprises
only two sources (guitar and vocal), it was not included in the
3-channel case. The 2- and 3-channel mixtures were produced
by convolving the impulse response E2A or JR2, included
in the RWCP database [65], with each source. The recording
conditions of these impulse responses are shown in Fig. 15.

As in [14], the 3/4-overlapping 8192-point-long Hann win-
dow (512 ms) was used for STFT, and the number of bases of
ILRMA for each source was set to 30. The other settings of the
algorithmic parameters were the same as those in the previous
experiment using speech signals.

2) Results: The experimental results for the 2- and 3-channel
cases are summarized in Figs. 16 and 17, respectively. From the
figures, it can be seen that the proposed HVA was comparable
to the other methods. Since the 2-channel mixtures comprise
harmonic signals as the sources (see Table I), HVA should have
been able to effectively model the harmonic structure through
cepstrum. Therefore, even though ILRMA’s ability of modeling

Fig. 15. Recording conditions of the impulse responses (E2A and JR2 [65])
utilized in the experiment in Section VI-D1.

Fig. 16. SDR improvements of the music signals separated from 2-channel
mixtures. The experimental settings are explained in Section VI-D1, where α =
μ1 = μ2 = 1 and the number of iterations was 200.

Fig. 17. SDR improvements of the music signals separated from 3-channel
mixtures. The experimental settings are explained in Section VI-D1, where α =
μ1 = μ2 = 1 and the number of iterations was 200.
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TABLE III
COMPUTATIONAL TIME PER ITERATION (W/ CORE I7-8700)

repetitive spectral patterns is advantageous for music signals,
HVA with λ = 0.08 was able to perform similarly.

For the 3-channel case, IVA performed better than ILRMA.
One reason for this result should be the presence of drums in
the sources (see Table II). ILRMA can handle such percussive
sources by devoting some of the bases, but HVA does not have
a mechanism for explicitly handle percussive sources. Even so,
HVA was able to perform comparably in this case, too. Note
that, as the masking-based BSS framework can simultaneously
utilize multiple criteria by combining multiple masks, HVA has a
potential of improvement by incorporating other time-frequency
masks targeting at the specific structure of the source signals as
examined in [66].

E. Computational Efficiency

The computational time of the algorithms depend on the
settings such as the window length and the number of chan-
nels. Table III shows the computational time per iteration for
2-channel speech and music separation (Section VI-C and VI-D,
respectively) as an example. Here, the computational time for
the speech and music cases were different because the numbers
of time segments and frequencies were different. The compu-
tational time of HVA was more than that of IVA because HVA
involves additional computation of logarithm, the (frequency-
directional) Fourier transform pair, cosine, and exponential.
ILRMA required more time for computation because it treats
the demixing filters as well as all time-frequency bins as the
optimization variables. As in Table III, the proposed HVA tends
to be more efficient than ILRMA but less efficient than IVA.

Note that Table III shows computational time per iteration,
and the total time depends on the number of iterations. The
required number of iterations depends on the situations. For
example, as shown in Figs. 11 and 12, HVA seems to require
20 and 50 iterations for Mixture A and B, respectively, with the
setting explained in Section VI-A. Since HVA is efficient than
ILRMA for each iteration and requires relatively small number
of iterations (see Fig. 5 for an example of the rapid evolution of
the mask of HVA), the computational time of HVA is usually
less than ILRMA.

F. Limitations of HVA

Here, some limitations of HVA are discussed. First, since
the mask-generating function of HVA targets only harmonic
signals, HVA cannot directly handle signals that do not exhibit
the harmonic structure (e.g., white noise). The mask must be
modified to enhance the non-harmonic signals in that case.
Second, the assumed model in HVA (also in IVA and ILRMA)
[Eq. (1)] does not consider additional noise and/or time variation

of the mixing system. To handle such cases, the algorithm and
mask must be modified accordingly. Third, the mask of HVA
cannot be used as a post filter as in [59] because the mask is not
intended to separate signals.

Although HVA has these limitations, some of them can be
easily resolved because defining another mask-generating func-
tion is painless. Note that the ideas behind the mask of HVA
can be solely used in other signal processing methods that
target harmonic signals. Such extensions and applications of
the proposed method and ideas are left as the future works.

VII. CONCLUSIONS

In this paper, the novel BSS method termed HVA was
proposed. By modeling the harmonic structure via cepstrum
analysis, HVA achieved the performance comparable to the
state-of-the-art method, ILRMA, with less computational effort.
To realize HVA, the general BSS algorithm based on time-
frequency masking was presented. Since it allows any mask
for enhancing the source signals, improving HVA as well as
investigating a completely new BSS method should be easy. The
future works include an extension of HVA by data-adaptation
(instead of using the fixed masking function), online extension of
the algorithm using adaptive techniques [67], and investigation
of combination of the masking-based algorithm and the existing
source enhancement techniques.
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