
DNN-Based Permutation Solver for
Frequency-Domain Independent Component

Analysis in Two-Source Mixture Case
Shuhei Yamaji∗ and Daichi Kitamura∗

∗ National Institute of Technology Kagawa College, Kagawa, Japan

Abstract—Frequency-domain independent component analysis
(FDICA) is a popular algorithm for multichannel audio source
separation. The source components in each frequencies estimated
by FDICA must be aligned over all frequencies so that the
components of the same source are grouped. This postprocessing
of FDICA is the so-called permutation problem. Although various
permutation solvers have been proposed, their performances are
still limited particularly in a multispeaker separation task in
a reverberant environment. To improve the performance of the
permutation solver, in this paper, a new data-driven permutation
solver based on deep neural networks (DNNs) is presented.
In the proposed method, the DNN that predicts whether the
input local time-frequency components belong to the same source
is trained, and the permutation problem is solved by taking
majority decisions of the predicted results.

I. INTRODUCTION

Blind source separation (BSS) is a method of estimating
original sources from an observed multichannel mixture signal
without knowing a priori information, e.g., the locations of
microphones and sources. When the number of microphones is
equal to or greater than the number of sources (overdetermined
case), independent component analysis (ICA) [1] is a typical
approach to solving the BSS problem, which estimates a
demixing matrix for the separation.

In general, audio signals are mixed with room reverberation
as a convolutive mixture, and simple ICA cannot separate
the audio sources. To solve this problem, frequency-domain
ICA (FDICA) [2] was proposed. In FDICA, ICA is indepen-
dently applied in each frequency bin, and the frequency-wise
demixing matrices are estimated. However, since ICA cannot
determine the order (permutation) of the estimated signals,
the frequency-wise components separated by FDICA must be
aligned over all frequency bins so that the components of the
same source are grouped. This is the so-called permutation
problem.

A major approach to solving the permutation problem is
based on a correlation between time series components of
the separated signals in adjacent or local frequency bins [3].
When the positions of microphones are known, the directions
of arrivals (DOAs) of the sources can be utilized for taking
an alignment of the separated components [4]. The unified
permutation solver combining frequency correlation and DOAs
was also proposed [5].
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In recent years, BSS algorithms without encountering the
permutation problem have been proposed. For example, inde-
pendent vector analysis (IVA) assumes the co-occurrence of all
frequency components of the same source and estimates the
frequency-wise demixing matrices avoiding the permutation
problem [6], [7]. Independent low-rank matrix analysis (IL-
RMA) [8], [9] assumes a low-rank time-frequency structure
of each source, resulting in a more precise estimation of
the permutation-aligned demixing matrices. However, their
performances are still limited particularly in a multispeaker
separation task. This is because the dominant frequencies
of speech signals are substantially overlapped. Moreover, the
source models assumed in the correlation-based permutation
solver [3], IVA, and ILRMA are not suitable for representing
speech time-frequency structures.

In this paper, a new data-driven permutation solver based
on deep neural networks (DNNs) is presented. The proposed
DNN is trained to predict whether the two input narrowband
frequency components (time-varying powers) belong to the
same source, where the training data can be prepared by
manually shuffling the narrowband frequency components of
clean or separated speech spectrograms for all frequency bins.
In the test stage, the trained DNN is applied to all frequency
bins, and majority decisions of the predicted results along the
time frames and the frequency bins are taken to obtain the
accurate permutation predictions. The validity of the proposed
method is confirmed by experiments of multispeaker audio
source separation, where the proposed permutation solver is
used after the estimation by simple FDICA.

In the underdetermined case (the number of microphones is
less than the number of sources), multichannel audio source
separation based on a spatial covariance matrix [10] is the
most popular and reliable algorithm. However, this method is
also faced with the permutation problem. Since the proposed
permutation solver only requires monaural (nonaligned) source
estimates, we can apply the proposed method in the underde-
termined case without loss of generality.

II. FDICA AND PERMUTATION PROBLEM

A. Formulation and FDICA

We define the numbers of audio sources and observed
channels (microphones) as N and M , respectively. The source,
mixture, nonaligned separated, and aligned separated signals
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obtained by short-time Fourier transform (STFT) are respec-
tively represented as

si,j = (si,j,1, · · · , si,j,n, · · · , si,j,N )
T ∈ CN , (1)

xi,j = (xi,j,1, · · · , xi,j,m, · · · , xi,j,M )
T ∈ CM , (2)

yi,j = (yi,j,1, · · · , yi,j,n, · · · , yi,j,N )
T ∈ CN , (3)

zi,j = (zi,j,1, · · · , zi,j,n, · · · , zi,j,N )
T ∈ CN , (4)

where i = 1, 2, · · · , I , j = 1, 2, · · · , J , n = 1, 2, · · · , N ,
and m = 1, 2, · · · ,M are the indices of frequency bins, time
frames, sources, and channels, respectively, and ·T denotes
the vector transpose. Also, si,j,n, xi,j,m, yi,j,n, and zi,j,n
are the complex-valued elements of spectrogram matrices
Sn ∈ CI×J , Xm ∈ CI×J , Yn ∈ CI×J , and Zn ∈
CI×J , respectively. Note that the estimated spectrogram Yn

is problematic because the source permutation of narrow-band
frequency components (yi,1,n, · · · , yi,J,n) over all frequencies
is not aligned, which is called the permutation problem. The
permutation-aligned spectrograms Zn can be obtained by
applying a permutation solver to Yn. Thus, the aim of this
paper is to estimate Zn from Yn.

In FDICA, we assume that the mixing system is linear time-
invariant in each frequency bin, which can be expressed by
the frequency-wise mixing matrix Ai = (ai,1 · · · ai,N ) ∈
CM×N . The mixture signal is defined as

xi,j = Aisi,j , (5)

where ai,n ∈ CM is the steering vector of the nth source.
This mixing model is valid only when the window length in
STFT is longer than the length of room reverberation.

When the number of channels is equal to the number of
sources (M = N ) and Ai is a nonsingular matrix, the
demixing matrix Wi = A−1

i = (wi,1 · · ·wi,N )H ∈ CN×M

exists, and the separated signal is defined as

zi,j = Wixi,j , (6)

where wi,n ∈ CM is the demixing filter of the nth source and
·H denotes the Hermitian transpose. Therefore, the demixing
matrix Wi for all frequency bins must be estimated by FDICA
to achieve source separation.

B. Permutation Problem

FDICA cannot estimate the scales (volumes) and orders
(permutations) of the separated signals because ICA is based
on the statistical independence between sources. Therefore,
the uncertainty remains even when the separation is ideally
performed as follows:

Ŵi = DiPiWi (7)

= DiPiA
−1
i , (8)

where Pi is a permutation matrix that may replace orders
of the row vectors wi,n in Wi and Di is a diagonal matrix
that may vary the scale of wi,n in Wi. For this reason, the
separated signals estimated by FDICA, Y1, · · · ,YN , have the
permutation and scale ambiguities in each frequency bin. The

FDICA

All frequency
components

Source 1

Source 2

Observed 1

Observed 2

Permutation

Solver

Estimated signal 1

Estimated signal 2
Time

Fig. 1. Permutation problem in FDICA, where N = 2.

scale ambiguity can easily be recovered by applying the back
projection technique [3]. However, estimating the correctly
aligned permutation is difficult because this problem includes a
combinatorial explosion. The permutation problem is depicted
in Fig. 1, where the permutation solver takes an alignment of
the separated sources over all frequency bins.

The permutation-aligned separated signal zi,j is obtained as

zi,j = P−1
i D−1

i yi,j

= P−1
i D−1

i Ŵixi,j (9)

In this paper, we aim to estimate P−1
i in (9) over all frequency

bins using a new data-driven permutation solver.

III. PROPOSED METHOD

A. Motivation and Strategy

In Ref. [11], the optimal window length in STFT for BSS
was experimentally investigated. Fig. 6(b) in Ref. [11] shows
that FDICA with the DOA-based permutation solver, IVA, and
ILRMA cannot accurately separate speech sources under a
reverberant condition (T60 = 470 ms). However, FDICA with
the ideal permutation solver achieves over 10 dB improvement
in the signal-to-distortion ratio (SDR) [12], where the ideal
permutation solver uses completely separated (oracle) source
signals si,j for estimating the permutation alignment matrix
P−1

i . This fact implies that the demixing matrix Ŵi itself
can be accurately estimated by FDICA even for a reverberant
speech mixture, but only the permutation solver fails to
estimate P−1

i . IVA and ILRMA may also fail to solve only
the permutation problem even though it may successfully
separate frequency-wise sources. This may be because the
source model assumed in IVA or ILRMA is not suitable
for speech sources. In fact, the source model in IVA, i.e.,
the co-occurrence of all frequency components of the same
source, is too simplistic to avoid the permutation problem.
Also, the source model in ILRMA, i.e., the low-rank time-
frequency structure of the same source, does not fit to the
power spectrogram of speech signals, which dynamically and
continuously changes its spectra.

On the basis of the experimental result in Ref. [11], we can
assume that FDICA achieves satisfactory separation in each
frequency bin. Thus, in this paper, we only focus on accurately
solving the permutation problem and develop a new DNN-
based supervised (data-driven) permutation solver. Hereafter,
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we only treat a two-source mixture case (N = 2). This is
because in this study, we focus on only the investigation of
the availability of DNN for solving the permutation problem.
The algorithm for mixtures with more than two sources is our
important future work.

The proposed DNN-based permutation solver is summarized
as follows:

• Two frequency-binwise activations (time-varying powers)
in the two source spectrograms Y1 and Y2 are input to
the DNN.

• The DNN predicts whether the two input binwise acti-
vations of each source are the correct permutation as a
binary scalar.

• The DNN is applied to scan all frequency bins and time
frames of the separated sources Y1 and Y2 estimated by
FDICA.

• The conclusive estimate of permutation P−1
i is decided

using a majority decision of the predicted results along
frequency bins and time frames.

The proposed permutation solver can be interpreted as a su-
pervised and nonlinear extension of the conventional binwise-
correlation-based permutation solver [3] because the proposed
DNN exploits the relationship between two activations of
adjacent or local frequency bins. The training data for the
proposed DNN can easily be produced by manually shuffling
the clean or separated speech spectrograms to simulate the
permutation problem, where the labels of this input data are
given by the shuffling result.

B. DNN Input and Output

The input vector for the proposed DNN model is shown
in Fig. 2. After applying FDICA to the observed mixture,
we obtain the separated spectrograms Yn, which have a
permutation problem. From their power spectrograms, |Yn|.2,
two-source (n = 1 and 2) and two-frequency-binwise (i and
i + ω) short-time activations with length τ are gathered as
follows:

di,ω,γ = (r̃Ti,γ , g̃
T
i,ω,γ)

T ∈ R4τ×1
≥0 , (10)

r̃i,γ = (ri,γ,1
T, ri,γ,2

T)T ∈ R2τ×1
≥0 , (11)

ri,γ,n = (|yi,(γ−1)η+1,n|2, |yi,(γ−1)η+2,n|2,
· · · , |yi,(γ−1)η+τ,n|2)T ∈ Rτ×1

≥0 , (12)

g̃i,ω,γ = (gi,ω,γ,1
T, gi,ω,γ,2

T)T ∈ R2τ×1
≥0 , (13)

gi,ω,γ,n = (|yi+ω,(γ−1)η+1,n|2, |yi+ω,(γ−1)η+2,n|2,
· · · , |yi+ω,(γ−1)η+τ,n|2)T ∈ Rτ×1

≥0 , (14)

where | · |.2 for matrices returns a matrix with element-
wise absolute and squared operations, ω = −Ω,−Ω +
1, · · · ,−1, 0, 1, · · · ,Ω is the index that defines the difference
in the number of frequency bins between ri,γ,n and gi,ω,γ,n,
η is the stride length of the short-time activation along the
time-frame axis, and γ = 1, 2, · · · ,Γ is the index of short-
time activations. Note that Γ is calculated using the settings
of the length of short-time activations τ and the stride length
η. The vector ri,γ,n corresponds to the short-time activation

Time

F
re
q
u
en
cy

Fig. 2. Input vector of DNN. Matrices |Y1|.2 and |Y2|.2 are separated power
spectrograms with permutation problem, and red and blue binwise activations
(rows of |Y1|.2 and |Y2|.2) depict sourcewise components, e.g., red and blue
slots respectively correspond to first and second source components.
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Fig. 3. DNN predictions in subband frequency bins, where f1, f2, · · · , f5
are frequency bins in subband frequency, and index of short-time activations,
γ, is omitted for simplicity. Reference frequency bin is i = f3, and adjacent
or local frequency bins are i + ω = f1, f2, · · · , f5, namely, Ω = 2. When
source permutation of r̃i and g̃i,ω is correct, DNN ideally outputs zero as
“same.” In contrast, when source permutation of r̃i and g̃i,ω is incorrect,
DNN ideally outputs one as “different.”

in the reference frequency bin i, and the vector gi,ω,γ,n is the
short-time activation in the adjacent or local frequency bin
i+ ω as shown in Fig. 2.

The input vector for DNN is defined as the normalized
vector of (10) obtained as

d̃i,ω,γ =
di,ω,γ

∥di,ω,γ∥2
∈ R4τ×1

≥0 , (15)

where ∥ · ∥2 denotes the L2 norm.
The proposed DNN model is a binary classifier that out-

puts zero or one. The “zero” output indicates that the per-
mutations of two input short-time activations (ri,γ,1, ri,γ,2)
and (gi,ω,γ,1, gi,ω,γ,2) are correct, namely, ri,γ,1 and gi,ω,γ,1

are the same source components and ri,γ,2 and gi,ω,γ,2 are
also the same source components. In contrast, the “one”
output indicates that the permutations of (ri,γ,1, ri,γ,2) and
(gi,ω,γ,1, gi,ω,γ,2) are incorrect, namely, ri,γ,1 and gi,ω,γ,1 are
the different source components and ri,γ,2 and gi,ω,γ,2 are also
the different source components. These predicted results are
illustrated in Fig. 3. In practice, the result of DNN prediction
is not a binary but a soft scalar defined as

qi,ω,γ = DNN
(
d̃i,ω,γ

)
∈ [0, 1], (16)
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Fig. 4. DNN architecture.

which can be interpreted as the reliability of the permutation
correctness.

C. DNN Architecture and Training Loss Function

Fig. 4 depicts an architecture of DNN used in the proposed
permutation solver. This DNN model has full-connected eight
layers (one input layer, six hidden layers, and one output
layer). A rectified linear unit (ReLU) is applied after the
intermediate hidden layers, and a sigmoid function is applied
after the final hidden layer. The loss function is defined as a
mean squared error (MSE) between the predicted result qi,ω,γ

and its target label.

D. DNN Predictions in Subband Frequency Bins

The examples of DNN prediction are illustrated in Fig. 3,
where f1, f2, · · · , f5 are the subband frequency bins, and the
index of short-time activations, γ, is omitted for simplicity.
In this figure, the reference frequency bin is set to i = f3,
and its adjacent or local frequency bins are defined as i+ω =
f1, f2, · · · , f5, namely, Ω = 2. Note that the component in the
reference frequency bin f3 of Y1 corresponds to a red source,
but the components in f2, f4, and f5 of Y1 correspond to a
blue source. All the combinations of (r̃i, g̃i,ω) are input to the
DNN, which are (r̃f3 , g̃f3,−2), (r̃f3 , g̃f3,−1), · · · , (r̃f3 , g̃f3,2)
in the case of Fig. 3. When the permutations of the two input
frequency bins (i and i + ω) are correct, the DNN ideally
outputs zero (the “same” label). In contrast, when the permu-
tations of the two input frequency bins are incorrect, the DNN
ideally outputs one (the “different” label). In Fig. 3, for the
combinations (r̃f3 , g̃f3,−2) and (r̃f3 , g̃f3,0), the DNN outputs
zero, and for the combinations (r̃f3 , g̃f3,−1), (r̃f3 , g̃f3,1), and
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Fig. 5. DNN predictions for all short-time subbands and their majority
decisions. Since permutation does not depend on time frames, this majority
decision along time-frame axis effectively reduces adverse effect of DNN
prediction errors.

(r̃f3 , g̃f3,2), the DNN outputs one. As a result, the correctness
values of the permutation based on the reference frequency bin
i can be estimated as shown on the right side of Fig. 3. This
vector is called (subband) permutation vector. In practice, the
DNN output qi,ω,γ is a value in the range [0, 1]. To produce
the subband permutation vector, the following thresholding is
performed:

q̃i,ω,γ = round(qi,ω,γ) ∈ {0, 1}, (17)

where round(·) is a rounding operator, and the subband
permutation vector can be obtained as

q̃i,γ = (q̃i,−Ω,γ , q̃i,−Ω+1,γ , · · · , q̃i,−1,γ , q̃i,0,γ ,

q̃i,1,γ , · · · , q̃i,Ω,γ)
T ∈ {0, 1}2Ω+1. (18)

The lengths of the short-time activations r̃i,γ and g̃i,ω,γ

are defined as τ . Since audio signals have a sparse property in
the time-Frequency-domain, there are so many time-frequency
slots that have almost zero powers. In particular, speech signals
have silent intervals due to breath. If the reference activation
r̃i,γ is a silent interval of the sources, the prediction of DNN
becomes unstable.

To cope with this problem, in the proposed permutation
solver, the DNN prediction is multiply applied to all the time
frames by shifting the τ -length input vector d̃i,ω,γ with a η-
length stride as shown in Fig. 5. Therefore, we can collect
the DNN outputs along the time frames. By taking a majority
decision of these DNN outputs, we obtain a more reliable
subband permutation vector ṽi. This process can be described
as

vi =
1

Γ

∑
γ

q̃i,γ ∈ {0, 1}2Ω+1, (19)

ṽi = round(vi) ∈ {0, 1}2Ω+1, (20)

where round(·) for vectors denotes the element-wise rounding
operation. This majority decision is reasonable because the
permutation problem does not depend on the time frames,
and the adverse effect of the prediction errors is effectively
reduced.
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Fig. 6. Estimation of subband permutation vectors in all frequency bins.
Subband is shifted with stride length and several overlaps. Similarly to time-
frame axis, majority decision is performed for each frequency bin.

E. Estimation of Fullband Permutation Vector

The proposed DNN-based permutation solver consists of
the following steps: (a) prediction of the subband permuta-
tion vectors in all the frequency bins with subband striding
(Sect. III-E1, Fig. 6) and (b) calculation of the fullband
permutation vector based on a similarity comparison and a
majority decision (Sect. III-E2, Fig. 7).

1) Estimation of Subband Permutation Vectors in All Fre-
quency Bins: The subband permutation vector ṽi is esti-
mated in all the frequency bins by shifting the reference
frequency bin i (striding subband frequency bins in the range
[i−Ω, i+Ω]) as shown in Fig. 6. Thus, we obtain I subband
permutation vectors ṽ1, ṽ2, · · · , ṽI .

Note that the significance of frequency-wise binary scalars
in ṽi is not identical within ṽ1, ṽ2, · · · , ṽI . This is because the
DNN output indicates that the frequency-wise components in
Yn correspond to the “same (zero)” source as the component
in the reference frequency bin i or “not (one)” and the source
permutation of the reference frequency bin varies depending
on i. For example, in Fig. 6, zeros and ones in ṽf3 respectively
indicate “red” and “blue” source components, but zeros and
ones in ṽf4 respectively indicate “blue” and “red” source
components (because the reference frequency bins f3 and f4
contain red and blue source components, respectively). The
alignment of these subband permutation vectors is processed
in Sect. III-E2.

2) Reconstruction of Fullband Permutation Vector: From
the estimated subband permutation vectors ṽ1, ṽ2, · · · , ṽI , we
reconstruct the fullband permutation vector defined as

u = (u1, u2, · · · , uI)
T ∈ {0, 1}I . (21)

The reconstruction process of u is depicted in Fig. 7.
As described in Sect. III-E1, the significance of subband

permutation vectors ṽ1, ṽ2, · · · , ṽI is not identical. Therefore,
it is necessary to unify the subband permutation vectors
over all frequency bins so that the values “zero” and “one”
respectively indicate the first and second sources (red and blue
sources in Fig. 7).
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Fig. 7. Reconstruction of fullband permutation label: (a) initialization step, (b)
second step, and (c) last step, where similarity comparison is based on MSE.
This process is performed to associate DNN predictions (zeros and ones) with
each source component.

Fig. 7(a) shows the initial step in the reconstruction of
the fullband permutation vector u. The subband permutation
vector of the lowest frequency subband, ṽis , [ṽf3 in Fig. 7(a)]
is simply set to the corresponding frequency bins in the
fullband permutation vector u as shown in Fig. 7(a), where is
is the index of the lowest reference frequency bin. In Fig. 7(a),
since is = f3 and Ω = 2, u1, u2, · · · , u5 are determined by
ṽf3 .

Fig. 7(b) shows the following step of Fig. 7(a). In this
step, the subband permutation vector adjacent to the lowest
frequency subband, ṽis+1, and its binary complement vector
ṽis+1 [ṽf4 and ṽf4 in Fig. 7(b)] are prepared. When we define
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Fig. 8. Solving permutation problem by replacing frequency-wise components
on the basis of the fullband permutation vector.

a part of frequency bins in u as

ǔi = (ui−Ω, ui−Ω+1, · · · , ui+Ω−1)
T ∈ {0, 1}2Ω, (22)

the two similarities MSE(ṽis+1, ǔis+1) and
MSE(ṽis+1, ǔis+1) are compared, where MSE(·, ·) returns
the MSE value between two input vectors. Then, the vector
ṽis+1 or ṽis+1 that minimizes MSE is selected and stored in
the memory. The fullband permutation vector u is updated
by taking a majority decision using the vectors stored in
the memory as shown in Fig. 7(b). Finally, by iterating the
above-mentioned step, the complete fullband permutation
vector u can be obtained as shown in Fig. 7(c).

It is worth mentioning that the iterative majority decision
used in the reconstruction process of u effectively reduces the
adverse effect of the DNN prediction errors, similarly to the
majority decision in Fig. 5.

F. Replacing Components Based on Fullband Permutation
Vector

The fullband permutation vector u is equivalent to the esti-
mate of the permutation matrix P−1

i . Thus, the frequency-wise
source components can be replaced to solve the permutation
problem. This process is illustrated in Fig. 8.

IV. EXPERIMENTS

A. Conditions

To evaluate the performance of the proposed permuta-
tion solver, we conducted BSS experiments in which speech
sources were separated. We compared three BSS methods,
namely, FDICA with the ideal permutation solver (IPS), IL-
RMA [9], and FDICA with the proposed permutation solver.
The IPS utilizes the oracle (completely separated) source
signals for solving the permutation problem, which provides
upper-limit performance for FDICA-based BSS. The details
of FDICA with IPS can be found in Ref. [11].

We used the “nonpara30” dataset obtained from the
Japanese versatile speech (JVS) corpus [13] as training data
for the proposed permutation solver. We used 190 speech files
(95 files for 46 males and 95 files for 48 females) from the
dataset, and 10-s-long two speech files were used as the dry
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Fig. 9. Recording condition of JR2 impulse response.

F
D

IC
A

IP
S

F
re

q
u
e
n
c
y
-w

is
e

ra
n
d
o
m

 s
h
u
ff
lin

g

Dry sources
Mixture

signal

Permutation-aligned

separated

signal
Input vector

of DNN

Audio files

45 male & 46 female

Speech

Nonaligned

separated

signal

Nonaligned

separated

signal
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sources. To simulate the multichannel recording, these speech
dry sources, S1 and S2, were convoluted with the JR2 impulse
response obtained from the RWCP database [14], where the
reverberation time is T60 = 470 ms. The recording condition
of the JR2 impulse response is shown in Fig. 9.

The input vectors for DNN were produced by simulating
FDICA separation as depicted in Fig. 10, where the label
vectors are obtained from the result of frequency-wise random
shuffling. STFT was applied to the observed signals using
a 512-ms-long Hamming window with 128-ms-long shifting
to produce the mixture spectrograms X1 and X2, and the
separated signals Y1 and Y2 were estimated by FDICA. The
permutation-aligned spectrograms Z1 and Z2 can be obtained
by applying IPS to Y1 and Y2. To simulate the FDICA-
based separation with the permutation problem, the frequency
components were randomly shuffled, and the simulated non-
aligned spectrograms Y ′

1 and Y ′
2 were produced. The DNN

input vectors and their label vectors were calculated from
Y ′
1 and Y ′

2 , and we prepared 400,000 pairs of input and
label vectors as the training data, where the training data
was split into 200,000 training and 200,000 validation pairs.
The dry sources of test data (four males and four females)
were obtained from underdetermined separation tasks (dev1
data) in the SiSEC2011 dataset [15]. These signals were also
convoluted with the JR2 impulse response, and 28 observed
signals were produced. In DNN training, the batch size was
set to 128, and we used the Adam optimizer to train the
network. We did not use the dropout technique. Also, we set
τ = 40, Ω = 15, and η = 4, where Γ = 37. The number
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of dimensions of the input vector was 40 × 4 = 160. We
evaluated the improvement of SDR [12], which shows the total
separation accuracy including both the degree of separation
and the absence of artificial distortion.

B. Results

Fig. 11 shows the accuracy curves of DNN for the training
and validation datasets. From the results, we can confirm that
the DNN solves the frequency-wise permutation problem with
more than 85% accuracy. That is, there is a 15% chance that
the DNN fails to estimate the correct permutation. However,
the majority decisions along time frames and frequency bins
can effectively reduce the adverse effect of these prediction
errors.

The SDR improvements of all the methods are shown in
Fig. 12, where all the results for 28 observed signals were
averaged. As already reported in Ref. [11], the separation
performance of ILRMA is less than 4 dB, whereas FDICA
with IPS achieves over 10 dB improvement. These results
show that ILRMA fails to precisely solve the permutation
problem. The proposed method, FDICA with the DNN-based
permutation solver, outperforms ILRMA and achieves over
8 dB improvement, which is relatively close to the upper-limit
performance of FDICA-based separation. This is because the
supervised permutation solver provides better performance for
estimating the correct source permutation in each frequency
bin.

V. CONCLUSION

In this paper, we proposed a new DNN-based permutation
solver for determined audio source separation using FDICA,
where only the two-source mixture case is treated. The DNN
model in the proposed permutation solver is trained so that
the DNN predicts whether the two input binwise activations
of each source are the correct permutation as a binary scalar.
In addition, to cope with the prediction errors in the DNN
model, the majority decisions along time frames and frequency
bins are performed. From the speech separation experiments,
FDICA with the proposed permutation solver outperforms the
conventional ILRMA. The proposed permutation solver can
be applied to only the two-source mixture case. Developing a
more general framework of the DNN-based permutation solver
for an arbitrary number of sources is our important future
work.
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