
Nonnegative matrix factorization based on complex generative model

Daichi Kitamura�

Department of Electrical and Computer Engineering, National Institute of Technology,
Kagawa College, Chokushi 355, Takamatsu, 761–8058 Japan

Abstract: Nonnegative matrix factorization (NMF) is a powerful technique of extracting meaningful
patterns from an observed matrix and has been used for many applications in the audio signal
processing field. In this article, the principle of NMF and some extensions based on a complex
generative model are reviewed. Also, their application to audio source separation is presented.

Keywords: Nonnegative matrix factorization, Complex generative model, Audio source separation

PACS number: 43.60.Cg, 43.60.Uv [doi:10.1250/ast.40.155]

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1,2] is an

algorithm for extracting a limited number of meaningful

nonnegative patterns from an observed nonnegative matrix.

Since essential features in observed data are useful for

many applications, NMF has been utilized in many fields,

especially audio signal processing.

Let a nonnegative matrix be X 2 RI�J
�0 , where I and J

are the numbers of rows and columns in X, respectively. In

NMF, we approximately decompose X as

X � X̂ ¼ WH ð1Þ

¼
X
k

wkh
T
k ; ð2Þ

where W ¼ ðw1 � � � wKÞ 2 RI�K
�0 is called the basis matrix

that includes K meaningful nonnegative patterns (basis

vectors) wk 2 RI�1
�0 as column vectors and H ¼

ðh1 � � � hKÞT 2 RK�J
�0 is called the activation matrix that

includes the coefficient vectors hk 2 RJ�1
�0 for wk as row

vectors. Equation (1) can be rewritten in an element-wise

equation as

xij � x̂ij ¼
X
k

wikhkj; ð3Þ

where xij, x̂ij, wik, and hkj are the nonnegative elements in

X, X̂, W , and H, respectively, i and j are the indexes of

rows and columns in X, and k is the index of bases in W .

When the number of bases, K, is set to be small as

K � minðI; JÞ, the NMF decomposition (1) becomes a

low-rank approximation, resulting in the extraction of

meaningful patterns.

The variables W and H in NMF can be estimated by

the following optimization:

min
W ;H

DðXjWHÞ s.t. wik; hkj � 0 8i; j; k; ð4Þ

where Dð�j�Þ is a similarity function between two input

matrices for which the squared Euclidean distance [2],

generalized Kullback–Leibler (KL) divergence [2], and

Itakura–Saito (IS) divergence [3] are often used. Thus, (4)

estimates the low-rank model WH that approximately

represents the observed data X. Since the closed-form

solution of (4) cannot be obtained, W and H are estimated

using an iterative optimization algorithm [4,5] with an

arbitrary initialization scheme (e.g., [6]).

In audio signal processing, to obtain an observed

nonnegative matrix X, a complex-valued spectrogram

C 2 CI�J , which is obtained by applying short-time Fourier

transform (STFT) to a time-domain signal, is transformed

into the nonnegative matrix as X ¼ jCj:p, where the

operator j � j:p for matrices denotes the element-wise

absolute and pth-power operations. In this case, I and J

correspond to the numbers of frequency bins and time

frames, respectively. In particular, an amplitude spectro-

gram X ¼ jCj:1 or a power spectrogram X ¼ jCj:2 is often

used. Figure 1 shows an example of NMF decomposition

of a power spectrogram. The observed spectrogram

includes two tones with different pitches, and the model

WH represents their spectral patterns (w1 and w2) and

time-varying gains (h1 and h2) when K ¼ 2. Therefore,

NMF can be interpreted as unsupervised learning where

frequently appearing spectral patterns and their activations

are extracted as wk and hk, respectively.

NMF has been applied to many applications including

audio source separation [7–11], automatic music tran-

scription [12,13], acoustic event detection [14], and super-�e-mail: kitamura-d@t.kagawa-nct.ac.jp
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resolution of audio signals [15]. In this article, we review

some extended NMF algorithms that are based on a

complex generative model, and that enable us to deal with

not a nonnegative spectrogram X but a complex-valued

spectrogram C. Also, their application to audio source

separation is presented.

2. PROBLEM IN NMF-BASED MODELING

In NMF, X is approximated by the sum of rank-1

nonnegative matrices wkh
T
k as (2). This decomposition is

valid for inherently nonnegative observed data (e.g., gray-

scale pictures and counting data of customers’ buying).

However, for audio signals, there exists the problem

described below.

As shown in Fig. 2, audio mixing is the sum of time-

domain signals and is identical to the sum of the ‘‘complex-

valued’’ spectrograms in the time-frequency domain.

However, NMF decomposes the nonnegative spectrogram

jCj:p into K rank-1 nonnegative spectrograms wkh
T
k , and

this decomposition assumes the additivity of nonnegative

spectra. In general, for two complex values c1 and c2, the

additivity of their nonnegative values jc1jp and jc2jp

(jc1 þ c2jp ¼ jc1jp þ jc2jp) does not hold when p 6¼ 0. For

this reason, NMF decomposition of nonnegative spectro-

grams is an inappropriate model. More precisely, wave

cancellation by phase shifting in audio mixing is ignored in

the estimation of W and H. This is a specific problem in

audio modeling based on NMF. Although the modeling

error of phase spectra is not so critical for human audition,

in some tones, phase spectra significantly affect perception,

e.g., white noise and impulsive sound. Moreover, a phase

spectrogram is required when we apply inverse STFT with

the estimated model spectrogram WH to recover a time-

domain signal. As the most commonly used method, the

phase spectrogram of C is added to WH to recover the

signal. Wiener filtering or phase recovery [16,17] is another

approach often used.

Many algorithms have been proposed to solve the

above-mentioned problem. In this article, a complex-

valued extension of NMF (complex NMF: CNMF)

[18–20] and NMF based on complex generative models

[3,21–23] are reviewed.

3. CNMF EMPLOYING PHASE SPECTRA

The conventional NMF estimates nonnegative rank-1

spectrogram components wkh
T
k while ignoring the phase

spectrogram of X. In CNMF [18], the components are

extended from nonnegative matrices to complex-valued

matrices, namely, CNMF approximates the observed

complex-valued spectrogram C as

cij � ĉij ¼
X
k

ĉij;k ð5Þ

¼
X
k

wikhkje
j�ij;k ; ð6Þ

where cij is the element of C, ĉij;k 2 C is the complex-

valued spectral component (model) that satisfies jĉij;kj ¼
wikhkj and argðĉij;kÞ ¼ �ij;k, and j ¼

ffiffiffiffiffiffiffi
�1
p

. Therefore,

CNMF directly decomposes the complex-valued spectro-

gram C into complex-valued spectrogram components Ĉ

whose amplitude and phase are wkh
T
k and �k 2 RI�J

½0;2�Þ,

respectively, as

C � Ĉ ¼
X
k

Ĉk: ð7Þ

The variables in CNMF are wik, hkj, and �ij;k, and they

can be estimated by the maximum likelihood (ML) sense

with the following generative model:

cij ¼ ĉij þ "ij; ð8Þ

"ij 	 NCð0; �2Þ; ð9Þ

NCðc;�; �2Þ ¼
1

��2
exp �

jc� �j2

�2

� �
; ð10Þ

where NCðc;�; �2Þ is an isotropic complex Gaussian

distribution with the mean � and the variance �2 > 0, as

depicted in Fig. 3. CNMF approximates the observed

spectrogram C as the sum of a limited number of com-

ponents Ĉk, and its approximation error "ij is assumed to

obey Fig. 3 independently defined in each time-frequency

slot. By ML estimation, we obtain the following optimi-

zation problem for estimating the variables in CNMF:

Fig. 1 NMF decomposition for audio signals.

Mixture in waveform domain (time domain)

Mixture in nonnegative spectrogram domain

STFT and
taking th power

NMF
modeling

Rank-1
matrices

Not equivalent

Fig. 2 Inappropriate mixing model assumed in NMF for
audio signals.
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min
wik ;hkj;�ij;k

X
i; j

cij �
X
k

ĉij;k

�����
�����
2

s.t. wik; hkj � 0 8i; j; k;
X
i

wik ¼ 1 8k:

This minimization can be interpreted as a complex version

of NMF using the squared Euclidean distance. Similar to

NMF, the iterative update rules for CNMF can be derived

by an auxiliary function technique [18]. In recent years, the

similarity function in CNMF is generalized to �-diver-

gence, which includes the generalized KL divergence and

IS divergence [19,20].

As described above, CNMF assumes the additivity of

complex-valued spectrogram components and the low rank

of the amplitude spectrogram, resulting in an appropriate

decomposition model without ignoring phase information.

However, since we must estimate not only the bases and

activations but also their phase spectrograms, its optimi-

zation is unstable and strongly depends on the initialization

of variables [24].

4. NMF BASED ON COMPLEX
GENERATIVE MODELS

It has been revealed that NMF based on a particular

similarity function can be interpreted as the ML estimation

assuming complex generative models for the observed

data. On the basis of these generative models, the additivity

of nonnegative spectrograms is justified in a statistical

sense. In this section, NMF based on complex generative

models is reviewed.

4.1. NMF Based on IS Divergence and Its Statistical

Interpretation

IS divergence between c and � is defined as

Dðcj�Þ ¼
jcj2

�2
� log

jcj2

�2
� 1: ð11Þ

When we set the similarity function in (4) to (11), jcj2 ¼
xij, and �2 ¼

P
k wikhkj, NMF based on IS divergence

(ISNMF) is obtained, and its optimization problem can be

rewritten as

min
W ;H

X
i; j

xijP
k wikhkj

þ log
X
k

wikhkj

 !

s.t. wik; hkj � 0 8i; j; k; ð12Þ

where the constant terms are omitted. The statistical

interpretation of (12) when X ¼ jCj:2 is described below.

Let us assume that the observed complex-valued

spectrum cij can be decomposed into K complex-valued

components as cij ¼
P

k cij;k, where each spectral compo-

nent cij;k obeys the zero-mean isotropic complex Gaussian

distribution (Fig. 3) as

cij;k 	 NCð0; �2
ij;kÞ: ð13Þ

The variance �2
ij;k > 0 is a nonnegative parameter that

fluctuates depending on both frequency i and time j. Since

the complex Gaussian distribution has a stable (or

reproductive) property, the observed spectrum cij, which

is the sum of cij;k, also obeys the same generative model

with the variance �2
ij ¼

P
k �

2
ij;k as

cij 	 NCð0; �2
ijÞ

¼ NC

�
0;
P

k �
2
ij;k

�
: ð14Þ

The generative model (14) (hereafter referred to as pðcijÞ) is

depicted in Fig. 4. A time-frequency slot with a large

spectral power has a wide distribution and easily generates

complex values with a large amplitude. On the other hand,

a slot with a small spectral power has a narrow distribution

and generates almost zero values. Since pðcijÞ is a zero-

mean and isotropic distribution, the generative model of

phase argðcijÞ always shows a uniform distribution. The

variance �2
ij corresponds to the expectation value of cij as

�2
ij ¼ E½jcijj2


Fig. 4 Local Gaussian model assumed in ISNMF.

Fig. 3 Isotropic complex Gaussian distribution.
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¼
X
k

E½jcij;kj2
; ð15Þ

where E½�
 denotes the expectation of the observed data. By

assuming that pðcijÞ is mutually independent w.r.t. i and

j, we can define the generative model of the observed

complex-valued spectrogram C as

C 	 pðc11; c12; � � � ; cIJÞ

¼
Y
i; j

pðcijÞ

¼
Y
i; j

NC 0;
P

k �
2
ij;k

� 	
: ð16Þ

The generative model (16) is often called the local

Gaussian model (LGM) [25] and is extended to multi-

channel signals as a multivariate generative model

[26–28].

The variance �2
ij;k in (16) can be estimated by ML

estimation. The likelihood function of the observed data C

can be obtained as

L ¼
Y
i; j

NC 0;
P

k �
2
ij;k

� 	

¼
Y
i; j

1

�
P

k �
2
ij;k

exp �
jcijj2P
k �

2
ij;k

 !
; ð17Þ

and its negative log-likelihood function is

� logL ¼
X
i; j

jcijj2P
k �

2
ij;k

þ log
X
k

�2
ij;k þ log�

 !
: ð18Þ

Thus, the ML estimator of the variance is obtained by

minimizing (18) w.r.t. �2
ij;k. Note that the minimizations of

(18) and (12) become equivalent when xij ¼ jcijj2 and

�2
ij;k ¼ wikhkj up to the constant terms.

For the reasons mentioned above, it is revealed that

applying ISNMF to the power spectrogram X ¼ jCj:2 is

equivalent to the ML estimation of the variance �2
ij;k based

on LGM (16). Also, in LGM, the sum of nonnegative

components wikhkj corresponds to the sum of variances

�2
ij;k ¼ E½jcij;kj2
. This result shows that the mixture of

complex-valued spectral components (cij ¼
P

k cij;k) can be

represented by the sum of nonnegative parameters

(�2
ij ¼

P
k �

2
ij;k) by assuming LGM, and the ad hoc process

in NMF-based audio modeling, which is taking a power of

complex-valued data to make them nonnegative, can be

justified in the expectation sense. Therefore, the validity

of ISNMF-based modeling, which approximates a power

spectrogram jCj:2 by the sum of nonnegative spectrogram

components wkh
T
k as shown in Fig. 2, is justified even

though the mixing of audio signals is the sum of complex-

valued spectrograms. The formulation based on LGM is

applied to a multichannel audio source separation task

[27–30].

4.2. NMF Based on Generalized LGM

To justify the additivity of nonnegative spectrogram

components in the expectation sense, the generative model

needs to belong to a stable distribution family [31], which

has the stable property. The stable property satisfies the

following requirement: for two random variables (r.v.s)

v1 and v2 independently generated from the same distri-

bution, their linear combination av1 þ bv2 and another r.v.

dvþ e also obey the same distribution, where a > 0,

b > 0, d > 0, and e are constants. If we assume such stable

distribution as a generative model, the sum of r.v.s can

be modeled by the sum of the parameters of their

distributions. Indeed, the complex Gaussian distribution

is a special case of stable distribution, and the sum of r.v.s

can be modeled by the sum of the second-order expecta-

tions (variances) as

c1 	 NCð0; �2
1Þ; c2 	 NCð0; �2

2Þ

c1 þ c2 	 NCð0; �2
1 þ �

2
2Þ: ð19Þ

Similarly, if we employ the zero-mode isotropic complex

Cauchy distribution [31], which is defined as

CCðc; 0; �Þ ¼
2�1=2�

2�½jcj2 þ ð2�1=2�Þ2

3
2

; ð20Þ

the sum of r.v.s can be modeled by the sum of the first-

order expectations (scale parameters) � > 0. The complex-

valued spectral components cij;k are assumed to obey (20),

and the scale parameters defined in each time-frequency

slot correspond to the expectation of amplitude values as

�ij;k ¼ E½jcij;kj
. Since the complex Cauchy distribution has

the stable property, the generative model of the observed

spectrum cij ¼
P

k cij;k also becomes

cij 	 CC 0;
P

k �ij;k
� �

; ð21Þ

thereby justifying the additivity of amplitude spectral

components �ij;k ¼ wikhkj in the expectation sense.

NMF based on (21) is called Cauchy NMF [21].

Moreover, the complex Student’s t distribution is also

employed in NMF (tNMF) [22], where the complex

Student’s t distribution has a degree-of-freedom parameter

� > 0. tNMF is a generalization of Cauchy NMF and

ISNMF because it coincides with them when � ¼ 1 and

�!1, respectively. Thus, tNMF can represent the

intermediate model between Cauchy NMF and ISNMF,

although the stable property in the complex Student’s t

distribution holds only when � ¼ 1 and �!1. tNMF

is also applied to multichannel audio source separation

[32,33].

5. NMF BASED ON COMPLEX
GENERALIZED GAUSSIAN DISTRIBUTION

In this section, a new generalization of LGM, NMF

based on the complex generalized Gaussian distribution
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(GGDNMF) [23], is reviewed. Also, its application to

sparse noise reduction is presented.

5.1. Generative Model in GGDNMF

In GGDNMF, LGM assumed in ISNMF is generalized

to the complex generalized Gaussian distribution (GGD).

The zero-mean and isotropic complex GGD G
C
ðcij; 0; 	; �ijÞ

is assumed as a generative model of a complex-valued

spectrogram C:

C 	
Y
i; j

G
C
ðcij; 0; 	; �ijÞ

¼
Y
i; j

	
1�2

	

2
1�2

	��2
ij�ð2=	Þ

exp �
2

	

jcijj
�ij

� �	
 �
; ð22Þ

� p
ij ¼

X
k

wikhkj; ð23Þ

where 	 > 0 is the shape parameter, �ij > 0 is the scale

parameter defined in each i and j, �ð�Þ is the gamma

function, and p is the parameter that defines the domain of

NMF decomposition as jCj:p. As depicted in Fig. 5, the

complex GGD GCðcij; 0; 	; �ijÞ coincides with the complex

Gaussian and complex Laplace distributions when 	 ¼ 2

and 	 ¼ 1, respectively. Also, it becomes sub-Gaussian

(platykurtic) and super-Gaussian (leptokurtic) distributions

when 	 > 2 and 	 < 2, respectively.

5.2. Divergence Derived from Complex GGD

To clarify the relationship between the generative

model (22) and the similarity function in NMF, we derive

the divergence based on the complex GGD by calculating

deviance. The log-likelihood function of (22) becomes

logL ¼ logGCðc; 0; 	; �Þ

¼ log
	1�2

	

21�2
	��ð2=	Þ

� 2 log � �
2

	

jcj
�

� �	
:

From @ logL=@� ¼ 0, the ML estimator of � is given as

�ML ¼ jcj. The deviance D ¼ logLð�MLÞ � logLð�Þ � 0

is obtained as

Dðck�Þ ¼ �2 log jcj �
2

	
þ 2 log � þ

2

	

jcj
�

� �	

¼
2

	

jcj
�

� �	
� log

jcj
�

� �	
� 1


 �
: ð24Þ

Since the deviance (24) is nonnegative and becomes zero if

and only if � ¼ jcj, it satisfies the axiom of divergence. By

comparing (24) and IS divergence (11), we can confirm

that (24) is a generalization of IS divergence w.r.t. 	. Also,

it is revealed [23] that (24) is a special case in a more

generalized divergence called 
-� divergence [34].

5.3. Optimization Algorithm

The cost function in GGDNMF is given as

X
i; j

Dðcijj�ijÞ ¼
X
i; j

jcijj	P
k wikhkj

� �	
p

2
4

þ
	

p
log

X
k

wikhkj

3
5; ð25Þ

where the constant terms are omitted. The iterative update

rules for estimating the minimizers wik and hkj can be

obtained as follows [23]:

wik  wik

P
j

zijP
k0 wik0hk0j

� �2hkj
P

j

1P
k0 wik0hk0j

hkj

2
66664

3
77775

p
	þp

; ð26Þ

hkj hkj

P
i

zijP
k0 wik0hk0j

� �2wik

P
i

1P
k0 wik0hk0j

wik

2
66664

3
77775

p
	þp

; ð27Þ

zij ¼ jcijj
	
p�

1�	
p

ij

� �p

: ð28Þ

Fig. 5 Isotropic complex GGD with �ij ¼ 1:5.
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5.4. Application to Sparse Noise Reduction

As an application of NMF based on a heavy-tail

distribution such as 	 < 2 in GGDNMF, some experimen-

tal results of sparse noise reduction are presented. The

signal used in this experiment is shown in Fig. 6. Sparse

noise is the components sparsely distributed in the time-

frequency domain, and such noise is called musical noise

and often arises after applying nonlinear signal processing,

e.g., spectral subtraction. ISNMF with p ¼ 2, Cauchy

NMF with p ¼ 1, tNMF, or GGDNMF was applied to the

observed signal (Fig. 6(b)). The obtained model spectro-

gram jWHj:ð2=pÞ is shown in Fig. 7, where K was set to 30

for all NMFs. Also, � and p were respectively set to 2 and

0.5 in tNMF, and 	 and p were set to 0.1 in GGDNMF. As

the evaluation score, the source-to-distortion ratio (SDR)

[35] was used. From Fig. 7, we can confirm that the sparse

noise is reduced in all NMFs except for ISNMF. This is

because the ML estimation based on the heavy-tailed

distribution can ignore the sparse noise as outliers and finds

the parameters WH that have a low-rank structure in the

contaminated observed data.

Figure 8 shows the averaged scores of the same

experiment as in the case of Fig. 7 with various observed

signals. From this result, we can confirm the transition of

the optimal generative model (the value of � or 	 that

achieves the highest SDR) depending on the domain

parameter p. This is because the effect of the sparse noise

components varies depending on the spectrogram domain.

Regarding SDR, tNMF and GGDNMF achieve almost the

same performance for sparse noise reduction.

6. CONCLUSION

In this article, the inappropriate assumption in NMF-

based audio modeling was explained. As the solution to

this problem, CNMF and ISNMF were reviewed. Also,

the extensions of ISNMF, Cauchy NMF, tNMF, and

GGDNMF, were explained, and their application to sparse

noise reduction was presented.

ACKNOWLEDGMENTS

This work was partly supported by SECOM Science

and Technology Foundation, Yamaha corporation, and

JSPS KAKENHI Grant Numbers JP17H06572 and

19K20306.

REFERENCES

[1] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by
non-negative matrix factorization,’’ Nature, 401(6755), 788–
791 (1999).

[2] D. D. Lee and H. S. Seung, ‘‘Algorithms for non-negative
matrix factorization,’’ Proc. NIPS, pp. 556–562 (2000).

[3] C. Févotte, N. Bertin and J.-L. Durrieu, ‘‘Nonnegative matrix
factorization with the Itakura-Saito divergence. With applica-
tion to music analysis,’’ Neural Comput., 21, 793–830 (2009).

[4] M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono and
S. Sagayama, ‘‘Convergence-guaranteed multiplicative algo-
rithms for nonnegative matrix factorization with �-diver-
gence,’’ Proc. MLSP, pp. 283–288 (2010).

Fig. 6 Power spectrograms of (a) original and (b)
observed noisy signals.

Fig. 7 Examples of power spectrogram estimated by
(a) ISNMF (SDR: �13:52 dB), (b) Cauchy NMF
(SDR: 3.77 dB), (c) tNMF (SDR: 7.26 dB), and (d)
GGDNMF (SDR: 7.38 dB).

Fig. 8 Average SDR improvements of (a) tNMF and
(b) GGDNMF for various �, 	, and p.

Acoust. Sci. & Tech. 40, 3 (2019)

160



[5] C. Févotte and J. Idier, ‘‘Algorithms for nonnegative matrix
factorization with the �-divergence,’’ Neural Comput., 23,
2421–2456 (2011).

[6] D. Kitamura and N. Ono, ‘‘Efficient initialization for non-
negative matrix factorization based on nonnegative independ-
ent component analysis,’’ Proc. IWAENC (2016).

[7] T. Virtanen, ‘‘Monaural sound source separation by non-
negative matrix factorization with temporal continuity and
sparseness criteria,’’ IEEE Trans. Audio Speech Lang. Proc-
ess., 15, 1066–1074 (2007).

[8] P. Smaragdis, B. Raj and M. Shashanka, ‘‘Supervised and
semi-supervised separation of sounds from single-channel
mixtures,’’ Proc. ICA, pp. 414–421 (2007).

[9] H. Kameoka, M. Nakano, K. Ochiai, Y. Imoto, K. Kashino and
S. Sagayama, ‘‘Constrained and regularized variants of non-
negative matrix factorization incorporating music-specific
constraints,’’ Proc. ICASSP, pp. 5365–5368 (2012).

[10] D. Kitamura, H. Saruwatari, K. Yagi, K. Shikano, Y.
Takahashi and K. Kondo, ‘‘Music signal separation based on
supervised nonnegative matrix factorization with orthogonality
and maximum-divergence penalties,’’ IEICE Trans. Fundam.,
E97-A, 1113–1118 (2014).

[11] D. Kitamura, H. Saruwatari, H. Kameoka, Y. Takahashi, K.
Kondo and S. Nakamura, ‘‘Multichannel signal separation
combining directional clustering and nonnegative matrix
factorization with spectrogram restoration,’’ IEEE/ACM Trans.
Audio Speech Lang. Process., 23, 654–669 (2015).

[12] P. Smaragdis and J. C. Brown, ‘‘Non-negative matrix facto-
rization for polyphonic music transcription,’’ Proc. WASPAA,
pp. 177–180 (2003).
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