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Tutorial structure

1. Introduction
1. Separation of audio/speech signals

2. Live demonstration

2. ICA and IVA
1. ICA: Independent Component Analysis

2. IVA: Independent Vector Analysis

3. NMF
1. NMF: Nonnegative Matrix Factorization

2. MNMF: Multichannel NMF

4. ILRMA
1. ILRMA: Independent Low-Rank Matrix Analysis
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Separation of audio/speech signal 

cocktail party effect

speech recognition
in noisy environment

music analysis

3

• Separate 2 speeches with 2 microphones
• iPhone app

• Script

Live demonstration
4

The ICASSP meeting is the 
world’s largest and most 
comprehensive technical 
conference focused on signal 
processing and its applications. 

We are demonstrating the 
Blind Source Separation for 
convolutive mixtures of 
speech in a real room with 
real talkers.
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• Separate the mixtures at microphones
• into the original sources

• assuming M=N=2 for simplicity

• source activity and mixing system H is unknown (blind)

+

+

5

+

+

BSS: Blind Source Separation

Instantaneous BSS
• Mixing system H is described by scalars
• Sources are multiplied by scalars and then mixed

6

+

+

Simple and basic 
BSS model



ICASSP 2018 Tutorial T-1 Blind Audio Source Separation on Tensor Representation
Hiroshi Sawada, Nobutaka Ono, Hirokazu Kameoka, Daichi Kitamura 

4

Convolutive BSS
• Delay and reverberations in a real room situation

• mixing system H is described by impulse responses
• Sources are convolutively mixed

7

+

+

Convolutive BSS is a much 
harder problem than 
instantaneous BSS

The whole system

+

+

+

+

Convolution filter
(time domain)

Sources Mixtures Separations

Separation systemMixing system

8

convolution multiplication

Frequency response
(frequency domain)

STFT STFT: short-time Fourier transform
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STFT: short-time Fourier transform

• From a time-domain real-valued signal
• To a time-frequency-domain complex-valued signal

STFT

Spectrogram: only amplitudes are displayed

9

Frequency
• Frequency-domain processing is effective

• source characteristic
• convolution  multiplication

Time
• Source activity, Onset and offset

Channel
• Source, Mixture, Separation

Three key axes
10

Tensor representation Frequency

Time

Channel
Mixture
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Tensor and sliced matrices
11

Frequency

Time

Channel
Mixture Time

Channel
Mixture

Frequency

Time

slice into matrices

3.2. MNMF

2.1. ICA

3.1. NMF

2.2. IVA

4.1. ILRMA

component  vector

multichannel

Notations

s: sources
x: mixtures/observations
y: separations

H: mixing system
W: separation system

i: frequency bin index
j: time frame index
m: microphone index
n: source/separation index

I: number of frequency bins
J: number of time frames
M: number of microphones
N: number of sources

12
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Tutorial structure

1. Introduction
1. Separation of audio/speech signals

2. Live demonstration

2. ICA and IVA
1. ICA: Independent Component Analysis

2. IVA: Independent Vector Analysis

3. NMF
1. NMF: Nonnegative Matrix Factorization

2. MNMF: Multichannel NMF

4. ILRMA
1. ILRMA: Independent Low-Rank Matrix Analysis

13

Tensor and sliced matrices
14

Frequency

Time

Channel
Mixture Time

Channel
Mixture

slice into matrices

2.1. ICA

Convolutive BSS Instantaneous BSS
becomes easier

permutation indeterminacy needs to be aligned 
to properly reconstruct the whole separations
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15

• Extract the original sources from the mixtures
• Mixing matrix H cannot be obtained

+

+

+

+

Sources are 
assumed to be 
independent

Makes     
independent to 
each other

ICA: Independent Component Analysis

ICA: Independent Component Analysis
• In addition to independence, need to assume

• source distributions are different from Gaussian

+

+

+

+

Distributions are 
different from 

Gaussian

Makes the 
distribution far 
from Gaussian

16
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Speech mixtures

s

s

am
plitu

de

amplitude

17

18

s

am
plitu

de
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amplitude

Statistics of the mixtures
19

amplitude

Statistics of the mixtures

→ converge to the red line (Gaussian)

20

Central Limit Theorem
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A complex-valued source model

• Super-Gaussian distribution

• Sharper peak at the origin than Gaussian 

21

Real 
part

Imaginary
part

Independent component analysis

• Linear operation

• Output independence

• Non-gaussianity

22

+

+

Unknown 
mixing 

process
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Likelihood of separation matrix W

• Likelihood of W for the whole observations

• Probability density function, linear transformation

• Output independence

23

Log-likelihood function

Objective function to be minimized
24

Contrast function

1st order derivative

2nd order derivative

Maximum likelihood estimation = Minimize the negative log-likelihood
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Optimization methods

• Gradient descent

• Expensive matrix inversion 
• Slow convergence

• Three practical ways 
• Natural gradient
• Pre-whitening + FastICA
• Auxiliary function-based optimization

25

:step size 

Natural gradient
26

• No matrix inversion
• Efficient computation

• Equivariance property
• Free from the characteristics of mixing matrix 
(e.g. close to singular)

[Amari et al., 1996] 

[Cardoso and Souloumiac, 1996] 
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Convergence example
27

Estimated mixing matrix

Step size:

Starting from

Pre-whitening＋ FastICA

Mixtures Whitened Separated

s. t. 
via eigenvalue 
decomposition of

Maximize the log-likelihood 
w.r.t. a unitary matrix U

Separation matrix of the form:

Pre-whitening FastICA

28

[Hyvarinen et al., 2001] 
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FastICA

• Objective function w.r.t a unitary matrix U

• Minimize                   for

• with unitary constraint  

29

FastICA algorithm
30

• For                        (sequentially)

• Iterate the followings until convergence

Optimization of G by Newton’s method

Separated signal calculation

Gram-schmidt orthogonalization

Unit-norm normalization

[Hyvarinen et al., 2001] 
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31

FastICA convergence example

• Red（□）
• Starting from

• Likelihood maximization: points close to the origin

• Unit-norm normalization: points on the unit sphere

• Good solution only by 5 iterations

• Green（△）
• Starting from

• One-step solution by orthogonalization

• Objective function to be minimized

• If                              and

• Auxiliary function

Auxiliary function
32

[Ono and Miyabe, 2010]
[Ono 2011]

is monotonically decreasing

with auxiliary variable
Equal when
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• Iterate the followings until convergence

Auxiliary function-based optimization
33

Solve the HEAD problem for 

Separated signal calculation

Weighted covariance matrices for each separation

[Ono and Miyabe, 2010]
[Ono 2011]

Auxiliary ICA convergence example
34

Estimated mixing matrix

Starting from

able to take a big step 
at an early stage
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Comparisons of three methods
• Separation of 6-second 3 speeches with 3 microphones

• measured by signal-to-interference ratio (SIR)
• at frequency 3586 Hz,  201 samples,  pre-whitening applied

35

 Natural gradient: sensitive to step-size
 FastICA: fast convergence, slightly limited SIR (unitary constraint)
 Auxiliary ICA: fast convergence

computational cost consideredconvergence behavior

• Ambiguities of ICA solutions

If                               is a solution, then

is also a solution

for any diagonal      and permutation     matrix

Permutation and Scaling problem
36

Independence of                 does not change
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Permutation and Scaling problem
37

Permutation/Scaling

aligned
Permutation

aligned
Raw ICA outputs

Time frame

F
re

qu
en

cy
 b

in

Solving Permutation and Scaling Problems
• Permutation

• Post-processing
• see e.g. [Sawada et al., 2004], [Sawada et al., 2011]

• Tensor methods (IVA, ILRMA)
• will be explained in later sections

• Scaling
• Refer to a microphone observation

• So-called “projection back”
• via mixing system estimation

38

[Cardoso 1998]
[Murata et al., 2001]

[Matsuoka and Nakashima 2001] 
[Takatani et al., 2004]
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Scaling alignment example
39

Untouched reference 
microphone

Aligned

estimated mixing scalar

Mixing system estimation
40

How to calculate matrix

If        has an inverse

Otherwise (            )

ICA resultEstimated mixing situation

• Least-mean-square estimator 
that minimizes

• Moore-Penrose pseudo inverse
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Tutorial structure

1. Introduction
1. Separation of audio/speech signals

2. Live demonstration

2. ICA and IVA
1. ICA: Independent Component Analysis

2. IVA: Independent Vector Analysis

3. NMF
1. NMF: Nonnegative Matrix Factorization

2. MNMF: Multichannel NMF

4. ILRMA
1. ILRMA: Independent Low-Rank Matrix Analysis

41

Tensor and sliced matrices
42

Frequency

Time

Channel
Mixture Time

Channel
Mixture2.1. ICA

2.2. IVA
component  vector
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Two papers at ICA 2006
43

Concept of “multivariate source model” was presented 
in two papers at the same conference independently

Independent vector analysis
• ICA: Sources generate stochastic scalar variables

• IVA: Sources generate stochastic vector variables

44

Source 1
Source 2

Source 1
Source 2

Mixing process:
Separation process:

Same mixing / separation process as ICA, but multivariate source model 

Mixture

Mixture

Frequency
Time

Channel
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Likelihood of separation matrices W

• Likelihood of all Ws for the whole observations

• Probability density function, linear transformation

• Output independence

45

Log-likelihood function
Frequency

Time

Channel
Mixture

Objective function of IVA
46

• A set of demixing matrices to be estimated

• Objective function of IVA

Contrast
function

Multivariate p.d.f.

Frequency

Time

y is a function of w
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What p.d.f. is appropriate for a spectrum vector?
47

Choice of multivariate p.d.f.
• Necessary properties

• Non-Gaussian (like ICA)
• Representing higher-order dependency 

between vector components

• Well-used multivariate p.d.f.
• Spherical super-Gaussian [Hiroe 2006],[Kim 2006]

• Time-varying Gaussian [Ono+ 2012]

48

Frequency

Time

Variance is time-varying.
Totally it is super-Gaussian.
(Show later)
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Why spherical super-Gaussian?
• Let                                      where

• When         is Gaussian, sub-Gaussian, and super-
Gaussian, what dependency between      and      is 
represented?

49

Gaussian Sub-Gaussian Super-Gaussian

Spherical Gaussian
50

In spherical Gaussian case, the value of y1 does not change
the p.d.f. of y2. It means y1 and y2 do not have any dependencies.

Joint p.d.f. Conditional p.d.f.

Completely
overlapped
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Spherical Sub-Gaussian
51

In spherical sub-Gaussian case, when |y1| is larger,
|y2| tends to be smaller oppositely.

Joint p.d.f. Conditional p.d.f.

Spherical Super-Gaussian
52

In spherical super-Gaussian case, when |y1| is larger,
|y2| tends to be also larger. Therefore, it represents
co-occurrence among components.

Joint p.d.f. Conditional p.d.f.
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Time-Varying Gaussian
• P.d.f. of time-varying Gaussian

• Co-occurrence among frequency
components are explicitly 
represented by        .

• Shared among all frequency i.
• Can be changed at each time frame j.

53

F
re

q
u

e
n

cy

Time

Solutions for IVA
• The objective function of IVA is also nonlinear.

• Similarly as ICA, three typical methods
• Natural gradient [Kim+ 2006,Hiroe 2006]

• Pre-whitening + Fixed-point iteration (FastIVA) [Lee+ 2007]

• Dr. Taesu Kim (an inventor of IVA)’s code is available
https://github.com/teradepth/iva

• Auxiliary function-based optimization (AuxIVA) [Ono2011, Ono2012b]

54
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Auxiliary Function Approach
55

• Optimization Problem

• Auxiliary Function

• Alternative Update Rules

• Advantages
• Stable: Convergence is guaranteed
• Simple: No tuning parameters such as step size
But how to find useful auxiliary function is problem-dependent

Auxiliary variable update (like E-step)

Parameter update (like M-step)

More details will be explained later

Theorem for quadratic auxiliary function
• If                             and is monotonically decreasing in          ,

holds. The equality sign is valid iff .                  

56

Nonlinear
contrast function

Quadratic
auxiliary function

Multivariate
p.d.f.

Contrast 
function

Weight
function

Spherical Super-Gaussian

Examples
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Source activity
(auxiliary variable)

Weighted
covariance matrix:

Auxiliary Function for IVA
57

• Objective Function of IVA

• Auxiliary Function for IVA

If G is spherical and 
derived from super-Gaussian

Nonlinear
function of w

Quadratic
function of w

Minimizing auxiliary function
58

• The demixing matrix should be updated such that auxiliary 
function is minimized.

• From                          for all                        ,

HEAD (Hybrid Exact-Approximate Joint Diagonalization) 
problem [Yeredor 2009] is derived.
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HEAD Problem (1/2)
59

For simplicity, a frequency index i is dropped in this slide.

Given N positive definite matrices                           , 
find an N×N matrix                                      such that 

[Yeredor 2009]
ex. N=3 case

HEAD Problem (2/2)
60

For simplicity, a frequency index i is dropped in this slide.

Given N positive definite matrices                           , 
find an N×N matrix                                      such that 

[Yeredor 2009]

• Remarks
• Number of equations = number of variables

• When             , it is equivalent to generalized eigenvalue problem, 

which can be solved in a closed form. (Show later)

• When            , a closed-form solution has never been found.
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Derivation of sequential update rule
61

Let’s consider to solve                         in with fixing             .             

Some vector linearly 
independent of w2 and w3

If we choose        obtained 
at the previous iteration as    ,

can be rewritten by       .

Scale can be fixed by

We can update               
sequentially in the same way.

For simplicity, a frequency index i is dropped in this slide.

Algorithm of AuxIVA
62

Update of source activity
(shared in all frequency)

Update of 
weighted 

covariance matrix

Update of
demixing matrix

For               (every frequency)

For                   (every source)

Unit vector with the nth element unity 

Iterate until convergence

Update of separation

[Ono 2011]
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Separation Example (1/6)
63

Separation Example (2/6)
64
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Separation Example (3/6)
65

Separation Example (4/6)
66
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Separation Example (5/6)
67

Separation Example (6/6)
68
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Comparison with Natural Gradient
69

One iteration
(Matlab)

AuxIVA  : 0.34s
GradIVA: 0.16s

Three sources case

HEAD Problem in Two-Sources Case
70

HEAD problem is deformed to generalized eigenvalue problem, 
which can be solved in a closed form [Yoshioka 2008,Ono 2010]
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Algorithm of Stereo AuxIVA
71

Update of weighted 
covariance matrix

Update of demixing matrix

Iterate until convergence

Find                by solving

Update of source activity
(shared in all frequency)

Update of separation

[Ono 2012b]

Comparison with Natural Gradient (2)
72

0 50 100 150 200
0

5

10

15

Iteration steps

S
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d
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]

 

 

Natural Grad. (mu=0.1)
Natural Grad. (mu=0.2)
Natural Grad. (mu=0.3)
AuxIVA1
AuxIVA2Stereo AuxIVA

Two sources case
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Explicit Representation of Eigenvectors of 2×2 Matrix

•
• Two eigenvectors of 2×2 matrix can be explicitly given by

• See [Ono 2012b] about fast implementation using vector 
operation.

73

For simplicity, a frequency index i is dropped in this slide.

always holds

Implementation on iPhone
• Stereo AuxIVA was implemented on iPhone [Ono 2012b]

• Calculation time is almost linear to input signal length
(RTF≒1/5 @ 16kHz, 10itr. on iPhone4)

• Demo on youtube
(https://www.youtube.com/watch?v=lLMbflDMMeE)

74



ICASSP 2018 Tutorial T-1 Blind Audio Source Separation on Tensor Representation
Hiroshi Sawada, Nobutaka Ono, Hirokazu Kameoka, Daichi Kitamura 

38

Tutorial structure

1. Introduction
1. Separation of audio/speech signals

2. Live demonstration

2. ICA and IVA
1. ICA: Independent Component Analysis

2. IVA: Independent Vector Analysis

3. NMF
1. NMF: Nonnegative Matrix Factorization

2. MNMF: Multichannel NMF

4. ILRMA
1. ILRMA: Independent Low-Rank Matrix Analysis

75

Tensor and sliced matrices
76

Frequency

Time

Channel
Mixture

Frequency

Time3.1. NMF
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What is NMF? From “generative model” perspective

time

Fr
eq

ue
nc

y

77

What is NMF? From “generative model” perspective

time

Fr
eq

ue
nc

y

Time-varying amplitude of each basis spectrum

Basis spectrum

78
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What is NMF? From “generative model” perspective

20 40 60 80 100 120time

Fr
eq

ue
nc

y

Source separation = inverse problem of estimating 𝐓 and 𝐕 from 𝐗

79

NMF as spectrogram model fitting 
• Model a mixture spectrum as the sum of basis spectra 
scaled by time-varying magnitudes

80

Basis spectra

Time-varying
magnitudes

time 𝑗

Fr
eq

ue
nc

y 
𝑖 

𝑘

𝑘

Basis spectrum

Time-varying magnitude

Matrix notation:

Frequency
Time
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Popular divergence measures
• Measure of difference between 𝑥 and 𝑦

Euclidean distance

Kullback-Leibler (KL)
divergence

Itakura-Saito (IS) 
divegence

81

Geometrical understanding of NMF
• Because of the non-negativity of 𝐓, all basis vectors lie in the first quadrant. 

• Because of the non-negativity of 𝐕, 𝐓𝐯௝ can only cover the area (a convex 
cone) enclosed by the extended lines of all the basis vectors. 

• NMF attempts to find a convex cone that is closest to all the observed vectors.

82
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Sparsity-inducing effect of NMF
• NMF naturally produces sparse representations

• Let 𝐯ො be the solution to an unconstrained optimization problem:

• 𝐓𝐯ො corresponds to the closest point from 𝐲 in the subspace 
spanned by 𝐭ଵ, … , 𝐭௄.

• Except for the case where 𝐯ො is non-negative, the solution to the 
constrained optimization problem, 𝐓𝐯෤, will be the closest point to𝐓𝐯ො
in the area enclosed by the extended lines of all the basis vectors.

• This means at least one of the elements of 𝐯෤ becomes 0.

(unconstrained) (constrained)

Subspace spanned 
by 𝐭ଵ and 𝐭ଶ

83

Itakura-Saito divergence NMF [Févotte+2009] 

• Model mixture signal as the sum of Gaussian-distributed 
random signals with rank-1 power spectrograms

• Maximum likelihood of 𝐓 and 𝐕 amounts to NMF using Itakura-
Saito divergence 

Itakura-Saito divergence

Power spectrogram of component 𝑘

Likelihood function of 𝑻 and 𝑽

Complex spectrogram of component 𝑘

If and are independent

Rank-1 spectrogram

84
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Local Gaussian model (LGM)
• Generative model assuming each element of a complex spectrogram 

to independently follow a zero-mean complex Gaussian distribution 
with a different variance (power)

F
re

qu
e

n
cy

 𝑖

Likely to generate 
complex numbers near 0

Likely to generate complex 
numbers with larger magnitudes

grayscale

Time 𝑗

variance

85

Itakura-Saito divergence NMF (IS-NMF)
• Optimization problem:

Minimize

subject to
• How can we solve this?

• EM algorithm [Févotte+2009]

• Auxiliary function approach 
–Majorization-Maximization (MM) algorithm 

[Kameoka+2006], [Nakano+2010], [Févotte+2011]

–Majorization-Equalization (ME) algorithm [Févotte+2011]

86
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Expectation-Maximization (EM) algorithm
• When a certain likelihood function can be written as

where 𝐜 is a set of latent variables,
a stationary point of               can be found by iteratively 
performing the following steps:

• Expectation-step

• Maximization-step

87

Q function

IS-NMF optimization with EM algorithm
• Likelihood function for IS-NMF:

• Q function

• E-step

• M-step

88

(independent of 𝜃)

where

where

[Févotte+2009]
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Auxiliary function approach
• Techniques to find a stationary point of an objective function 

using an auxiliary function            that satisfies

• Majorization-minimization
[Hunter & Lange 2004]

• Majorization-equalization
[Févotte & Idier 2010]

objective auxiliary

[1]

[2]

[1]

[2]

[1]

[2]

89

• Comparison between MM and ME updates

Graphical illustration of MM and ME algorithms
90

auxiliary function objective function

MM ME
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• MM algorithm

Graphical illustration of MM and ME algorithms
91

objective
function

auxiliary function

• ME algorithm

Graphical illustration of MM and ME algorithms
92

objective
function

auxiliary function
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Relation to EM algorithm
• Objective: maximize 𝑝(𝐱|𝜃) w.r.t. 𝜃

Jensen’s inequality
Auxiliary function

E step：
Maximize auxiliary function w.r.t. 𝑞

M step：
Maximize auxiliary function w.r.t. 𝜃

𝐜: latent variable

93

Another look at MM algorithm
• Coordinate descent of 

94

auxiliary variable 𝛼

pa
ra

m
et

er
 𝜃

Contour line of

Initial 
parameter
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Another look at MM algorithm
• Coordinate descent of 

95

auxiliary variable 𝛼

Contour line of

Initial 
parameter

pa
ra

m
et

er
 𝜃

Another look at MM algorithm
• Coordinate descent of 

96

auxiliary variable 𝛼

Contour line of

Initial 
parameter

pa
ra

m
et

er
 𝜃
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Another look at MM algorithm
• Coordinate descent of 

97

auxiliary variable 𝛼

Contour line of

Initial 
parameter

pa
ra

m
et

er
 𝜃

Motivations for auxiliary function approach
• Auxiliary function can be useful and effective 
when one wants to 
• handle a non-convex objective function with multiple 
local optima and stationary points,

• handle an objective function that has 
discontinuous/non-differentiable points,

• handle equality/inequality constraints, and
• avoid matrix inversions.

98
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Useful inequalities for auxiliary function design (1/7)

• Jensen's inequality for non-negative arguments

right-hand
side

left-hand
side

E.g.) when                       :

：convex function

Equality holds when

99

Useful inequalities for auxiliary function design (2/7)

• Jensen's inequality for real number arguments

• Used for complex NMF 
[Kameoka+2009]

and RBM optimization
[Kameoka+2014][Takamune+2014]

right-hand
side

left-hand
side

Equality holds when

：convex function

100



ICASSP 2018 Tutorial T-1 Blind Audio Source Separation on Tensor Representation
Hiroshi Sawada, Nobutaka Ono, Hirokazu Kameoka, Daichi Kitamura 

51

Useful inequalities for auxiliary function design (3/7)

• 1st order Taylor expansion of  convex/concave functions

: concave function

E.g.) when                       :

Equality holds when

101

Useful inequalities for auxiliary function design (4/7)

• 1st order Taylor expansion of logarithmic function
Scalar case:

Extension to matrix case:

Equality holds when

Equality holds when

Equals to the sum of the logarithms 
of the eigenvalues of 𝐗

Used in multichannel NMF frameworks [Sawada+2012, Higuchi+2014]

and Positive Semidefinite Tensor Factorization [Yoshii+2013]

102
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Useful inequalities for auxiliary function design (5/7)

• Quadratic function tangent to power functions

• Used for sparse regularization
for complex NMF [Kameoka+2009]

When 0 < 𝑝 ≤ 2:

Equality holds when

103

Useful inequalities for auxiliary function design (6/7)

• 1st order Taylor expansion of L2 norm

• Used for sound source localization
[Ono+2009][Ono+2010] 

and Time-domain Spectrogram 
Factorization (TSF) [Kameoka2015]

Equality holds when
When

When
Equality holds when

For complex number: 

104



ICASSP 2018 Tutorial T-1 Blind Audio Source Separation on Tensor Representation
Hiroshi Sawada, Nobutaka Ono, Hirokazu Kameoka, Daichi Kitamura 

53

Useful inequalities for auxiliary function design (7/7)

• Logistic function

Gaussian distribution function
Equality holds when

105

• Objective function to be minimized:

 Reciprocal function is convex in positive domain 

 Logarithmic function is concave
Right-hand

side

[Kameoka+2006][Nakano+2010][Févotte+2011]
IS-NMF optimization with MM algorithm

Jensen's inequality

106
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IS-NMF optimization with MM algorithm
• Majorizer

• Update rules for 𝝀 and 𝐔

• Update rules for 𝐓 and 𝐕

107

[Kameoka+2006][Nakano+2010][Févotte+2011]

* Update rules of ME algorithm can be obtained by solving 𝐓 and 𝐕
that satisfies

Tutorial structure

1. Introduction
1. Separation of audio/speech signals

2. Live demonstration

2. ICA and IVA
1. ICA: Independent Component Analysis

2. IVA: Independent Vector Analysis

3. NMF
1. NMF: Nonnegative Matrix Factorization

2. MNMF: Multichannel NMF

4. ILRMA
1. ILRMA: Independent Low-Rank Matrix Analysis

108
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Tensor and sliced matrices
109

Frequency

Time

Channel
Mixture

Frequency

Time
3.2. MNMF

3.1. NMFmultichannel

Extension to multichannel input
• Frequency-domain instantaneous mixture:

• Assume local Gaussian model (LGM) with source power 
spectrograms expressed using NMF (low-rank) model

110

frequency
𝑖

time
𝑗

ch
an

ne
l

𝑚

source
𝑛

source
𝑛

time
𝑗

Mixing matrix Source signalsObserved signals
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Local Gaussian model
• Source model assuming each element of a complex spectrogram to 

independently follow a zero-mean complex Gaussian distribution with 
a different variance (power)

variance

111

Local Gaussian model
• Source model assuming each element of a complex spectrogram to 

independently follow a zero-mean complex Gaussian distribution with 
a different variance (power)

F
re

qu
e

n
cy

 𝑖

Likely to generate 
complex numbers near 0

Likely to generate complex 
numbers with larger magnitudes

grayscale

Time 𝑗

variance

112
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Local Gaussian model
• Source model assuming each element of a complex spectrogram to 

independently follow a zero-mean complex Gaussian distribution with 
a different variance (power)

variance

• Allows us to incorporate power spectrogram model in 𝜎௜௝,௡
ଶ

• 𝜎௜௝,௡
ଶ = ∑ 𝑡௜௞,௡𝑣௞௝,௡

 
௞ corresponds to NMF model

113

Local Gaussian model
• Source model assuming each element of a complex spectrogram to 

independently follow a zero-mean complex Gaussian distribution with 
a different variance (power)

variance

Likelihood

frequency
𝑖 time 𝑗

ch
an

ne
l

𝑚

source
𝑛

so
ur

ce
 𝑛

time 𝑗

• Allows us to incorporate power spectrogram model in 𝜎௜௝,௡
ଶ

• 𝜎௜௝,௡
ଶ = ∑ 𝑡௜௞,௡𝑣௞௝,௡

 
௞ corresponds to NMF model

114
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Super-Gaussianity of local Gaussian model
• Theorem

• Proof omitted

0
Kurtosis becomes 0 if and only
if all the variances are equal.

The time average of zero-mean Gaussian distributions 
with time-varying variances is super-Gaussian.

Using local Gaussian models implies assuming
source signals to follow super-Gaussian distributions

115

Multichannel NMF

• Probability density function of microphone array observations

log-likelihood

local Gaussian model

NMF model

• Invertible [Kameoka+2010][Kitamura+2015]

[Ozerov+2010, Sawada+2012,...]

• None [Ozerov+2010][Sawada+2012]
Assumption on mixing matrix

116

[Ozerov&Févotte2010][Kameoka+2010][Sawada+2012]

Specialized for determined system

Applicable for underdetermined system

• Auxiliary function approach
[Sawada+2012][Kitamura+2015]

• EM algorithm
[Ozerov+2010][Kameoka+2010]

Optimization

where and
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Multivariate extension of IS divergence
• Different expression of 

• Multivariate extension of IS divergence 
(a.k.a. log-determinant divergence)

117

: spatial property of source 𝑛

Treating NMF bases as individual sources
118

NMF bases: 
Frequent spectral 

patterns

allocated to each 
separation according 

to the spatial property 
of NMF bases

Special case where
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Nonnegativity: from scalar to vector
119

Scalar Vector

nonnegative complex

Observation

Nonnegative
representation

Low-rank 
model

• Hermitian positive-semidefinite matrix

• Spatial property of the k-th NMF basis at frequency i
All eigenvalues are nonnegative

Optimization problem of multichannel NMF
• Objective function to be minimized

120

with

-element wise:

typically IS divergence
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Auxiliary function design
121

with

Objective function

Auxiliary function

Jensen's inequality applied 
to reciprocal function

matrix extension

1st order Taylor expansion 
of logarithmic function

matrix extension

[Sawada+2012, Higuchi+2014, Yoshii+2013]

Multiplicative update rules
122

Multichannel IS-NMF IS-NMF

Algebraic Riccati equation
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Learned spatial property example
123

Basis-wise
The 10 bases seem to form 2 clusters, 
each of which corresponds to each source.

Inter-channel phase difference of source 𝑘
becomes                  where 𝐶 is speed of sound

source 1

source 2

Clustering NMF bases for sources
• Modify the modeling of the spatial property 

• with source-wise spatial property

124

Similar multiplicative updates derived 
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Learned spatial property example
125

Basis-wise Source-wise

Inter-channel phase difference of source 𝑘
becomes                  where 𝐶 is speed of sound

source 1

source 2

3 music parts separation example
• 3 sources and 2 microphones (underdetermined case)

126

4 examples in total can be found at 
http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/mchnmf/

The computational burden 
was heavy: it took 838.30 

seconds for separating 24-
second mixture. 
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Determined multichannel NMF
• Special case of multichannel NMF where mixing matrix

is invertible
• When                  , we can write                    and so 

• Earlier idea of Independent Low-Rank Analysis (ILRMA)

127

where and

[Kameoka+2010]

BSS methods and optimization techniques
2000 2010

Determined BSS
ICAICA

Underdetermined BSS

IVAIVA

NMFNMFMonaural source
separation

FD-ICAFD-ICA

TF mask 
estimation
TF mask 

estimation

Optimization techniques
IS divergence mini-
mization with MM
IS divergence mini-
mization with MMNatural gradientNatural gradient

Determined
MNMF

Determined
MNMF

AuxIVA
(MM)

AuxIVA
(MM)

MNMF
(MM)

MNMF
(MM)

MFHMM 
(MM)

MFHMM 
(MM)

IS-NMFIS-NMF

Complex
NMF

Complex
NMF

Factorial
HMM

Factorial
HMM

MNMF 
(EM)

MNMF 
(EM)

ILRMA
(MM)
ILRMA
(MM)

Separation matrix
optimization with IP

Separation matrix
optimization with IP

128

(Earlier idea of ILRMA)
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BSS methods and optimization techniques
2000 2010

Determined BSS
ICAICA

Underdetermined BSS

IVAIVA

NMFNMFMonaural source
separation

FD-ICAFD-ICA

TF mask 
estimation
TF mask 

estimation

Optimization techniques
IS divergence mini-
mization with MM
IS divergence mini-
mization with MMNatural gradientNatural gradient

Determined
MNMF

Determined
MNMF

AuxIVA
(MM)

AuxIVA
(MM)

MNMF
(MM)

MNMF
(MM)

MFHMM 
(MM)

MFHMM 
(MM)

IS-NMFIS-NMF

Complex
NMF

Complex
NMF

Factorial
HMM

Factorial
HMM

MNMF 
(EM)

MNMF 
(EM)

ILRMA
(MM)
ILRMA
(MM)

Separation matrix
optimization with IP

Separation matrix
optimization with IP

129

(Earlier idea of ILRMA)

Categorization of LGM-based BSS methods
130

Method

Attias (2003)

Ozerov & Févotte (2010)

Duong et al. (2010)

Kameoka et al. (2010)

Yoshioka et al. (2011)

Ono et al. (2012)

Sawada et al. (2013)

Higuchi et al. (2014)

Kitamura et al. (2015)

López et al. (2015)

Adiloğlu & Vincent (2016)

Kounades-Bastian et al. (2016)

Generative model
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Categorization of LGM-based BSS methods
131

Method

Attias (2003)

Ozerov & Févotte (2010)

Duong et al. (2010)

Kameoka et al. (2010)

Yoshioka et al. (2011)

Ono et al. (2012)

Sawada et al. (2013)

Higuchi et al. (2014)

Kitamura et al. (2015)

López et al. (2015)

Adiloğlu & Vincent (2016)

Kounades-Bastian et al. (2016)

Constraints on 

Tutorial structure

1. Introduction
1. Separation of audio/speech signals

2. Live demonstration

2. ICA and IVA
1. ICA: Independent Component Analysis

2. IVA: Independent Vector Analysis

3. NMF
1. NMF: Nonnegative Matrix Factorization

2. MNMF: Multichannel NMF

4. ILRMA
1. ILRMA: Independent Low-Rank Matrix Analysis

132
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Tensor and sliced matrices
133

Frequency

Time

Channel
Mixture

3.2. MNMF

2.2. IVA

4.1. ILRMA

Historical development
134

1994

1998

2013

1999

2012

Ye
ar

Many permutation solvers 
were proposed for FDICA

Many applications of NMF
Generative models in NMF
Many extensions of NMF

Independent component analysis (ICA)Independent component analysis (ICA)

Frequency-domain ICA (FDICA)Frequency-domain ICA (FDICA)

Itakura–Saito NMF (ISNMF)Itakura–Saito NMF (ISNMF)

Independent vector analysis (IVA)Independent vector analysis (IVA)

Multichannel NMFMultichannel NMF

2016

2009

2006

2011 Auxiliary-function-based IVA (AuxIVA)Auxiliary-function-based IVA (AuxIVA)

Time-varying Gaussian IVATime-varying Gaussian IVA

Nonnegative matrix factorization (NMF)Nonnegative matrix factorization (NMF)

Independent low-rank matrix analysis (ILRMA)Independent low-rank matrix analysis (ILRMA)

(Over-)determined problem Underdetermined problem

3.2

2.1
3.1

2.2

4.1

2.2
3.1

2.1

More efficient calculation 
for determined situation

More precise spectral 
model using NMF
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Historical development
135

1994

1998

2013

1999

2012

Ye
ar

Many permutation solvers 
were proposed for FDICA

Many applications of NMF
Generative models in NMF
Many extensions of NMF

Independent component analysis (ICA)Independent component analysis (ICA)

Frequency-domain ICA (FDICA)Frequency-domain ICA (FDICA)

Itakura–Saito NMF (ISNMF)Itakura–Saito NMF (ISNMF)

Independent vector analysis (IVA)Independent vector analysis (IVA)

Multichannel NMFMultichannel NMF

2016

2009

2006

2011 Auxiliary-function-based IVA (AuxIVA)Auxiliary-function-based IVA (AuxIVA)

Time-varying Gaussian IVATime-varying Gaussian IVA

Nonnegative matrix factorization (NMF)Nonnegative matrix factorization (NMF)

Independent low-rank matrix analysis (ILRMA)Independent low-rank matrix analysis (ILRMA)

(Over-)determined problem Underdetermined problem

3.2

2.1
3.1

2.2

4.1

2.2
3.1

2.1

More efficient calculation 
for determined situation

More precise spectral 
model using NMF

• Spatial model: assumption of mixing/demixing system
• Spectral model: assumption for each source

Spatial and spectral models in BSS
136

Observed 
mixtureMixing 

system

Estimated 
signal

Source 
distribution

Spectral model

Time-freq. 
structure

Spatial model

Demixing 
system

Source 
signal

- Instantaneous mixture in frequency domain
- Liner time-invariant mixing system

- Super Gaussianity of source dist.
- Sparse or low-rank time-freq. structure
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IVA revisited: model
137

• IVA extends ICA to multivariate probabilistic model

…… …… …

Observed 
vector Demixing 

matrix

Estimated 
vector

Higher-order 
correlations

Permutation-problem-free estimation of

Source 
vectorMutually 

independent
Mixing 
matrix

Frequency-domain ICA: frequency scalar random variables 
IVA: frequency vector random variables

Spherical 
distribution

[Hiroe+, 2006], [Kim+, 2006], [Kim+, 2007]

IVA revisited: compared to FDICA
138

• Frequency-domain ICA (FDICA)

• IVA

Observation

Update separation filter so that the estimated 
signals obey non-Gaussian distribution

Estimation

Demixing 
system

Current 
empirical dist.

Non-Gaussian 
source dist.

STFT

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

y

Time

Observation Estimation

Current 
empirical dist.

STFT

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

y

Time

Non-Gaussian 
spherical 

source dist.

Scalar r.v.s

Vector r.v.s

Update separation filter so that the estimated 
signals obey non-Gaussian multivariate distribution

Mixture is close to Gaussian signal 
because of central limit theorem

Source obeys 
non-Gaussian dist.

Mutually 
independent

Demixing 
system Mutually 

independent
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Extension of vector source model in IVA
139

• Frequency vector spectral model (IVA)

• NMF spectral model

Co-occurrence among frequency bins
of each source

Co-occurrence among time-frequency slots
of each source with a low-rank structure

F
re

q
u

e
n

cy

Time

F
re

q
u

e
n

cy

Time

Extend vector model to 
low-rank matrix model Vector-activated model

Low-rank model

More precise representation of 
time-frequency structure

Incrementation of frequency bases

If        can be decomposed as                         , then

ISNMF revisited: low-rank spectral model
140

• Itakura–Saito NMF (ISNMF)

Minimization of the above is equivalent to a maximum likelihood 
(ML) estimation with a following generative model:

[Févotte+, 2009]

Parameters are 
also decomposed

At each time-frequency slot, complex-valued component       obeys
Variance
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ISNMF revisited: low-rank spectral model
141

• Itakura–Saito NMF (ISNMF) [Févotte+, 2009]

Fr
eq

ue
nc

y
bi

n

Time frame

: Power spectrogram

Small variance

Large variance

Grayscale shows 
intensity of variance

NOTE:                                                is non-Gaussian
because the variance               can fluctuate along 
time and frequency

Re Im

Re Im

ILRMA: unified method of IVA and NMF
142

• Independent low-rank matrix analysis (ILRMA)

Observed 
signal

IVA
ISNMF

ISNMF

Estimated 
signal

Low-rank 
spectral model

Maximize 
independence

Low-rank 
modeling

1. Estimation of demixing matrix        (IVA spatial model)
2. Low-rank approximation using             (ISNMF spectral model)

[Kitamura+, 2016]

Unification of
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ILRMA: unified method of IVA and NMF
143

• Independent low-rank matrix analysis (ILRMA) [Kitamura+, 2016]

Motivation of ILRMA?

Low-rank assumption can avoid 
the permutation problem

Maximize non-Gaussianity
(using ICA or IVA theory)

(1) Mixture dist. approaches to Gaussian (2) Rank of spectrogram increases
When sources are mixed…

Time

F
re

q
u

e
n

cy
F

re
q

u
e

n
cy

Time

Time

F
re

q
u

e
n

cy
F

re
q

u
e

n
cy

Time

Mix

Restrict rank of separated signal
(using NMF theory)

To separate the sources…

Cost function in ILRMA
144

• Cost function in FDICA, IVA, or ILRMA
Source distribution 

(spectral model)

FDICA (Laplace)

IVA (spherical Laplace)

ILRMA (ISNMF model)

Frequency vector

Separable for frequency

IVA (time-varying Gauss)

[Hiroe+, 2006], [Kim+, 2006]

[Ono+, 2012]

[Kitamura+, 2016]

e.g., [Sawada+, 2003]



ICASSP 2018 Tutorial T-1 Blind Audio Source Separation on Tensor Representation
Hiroshi Sawada, Nobutaka Ono, Hirokazu Kameoka, Daichi Kitamura 

73

Cost function in ILRMA
145

• Cost function in ILRMA

Estimated signal: 

Cost function in 
time-varying Gaussian IVA
(estimates demixing matrix)

Cost function in 
ISNMF

(estimates low-rank spectral structure)

All the variables are 
alternatively updated

Spatial model update: AuxIVA
Spectral model update: ISNMF

Demixing matrix: 

Update rule of parameters in ILRMA
146

• Maximum-likelihood-based update rules

Spatial model
(demixing matrix)

Spectral model
(NMF variables)

: one-hot vector with one
at th element

Update estimated signal

Update demixing filter [Ono+, 2011]

Update estimated variance

Update NMF parameters [Nakano+, 2010]

Alternatively update both models

See also (pseudo code)
http://d-kitamura.net/pdf/misc/AlgorithmsForIndependentLowRankMatrixAnalysis.pdf
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• NMF bases should be automatically clustered into 
each source

Clustering NMF bases for sources
147

Fixed number of 
bases for each source

Adaptive number of 
bases for each source

Introduce 
partitioning function

Update rule of parameters in ILRMA
148

• Maximum-likelihood-based update rules with 

Spatial model
(demixing matrix)

Spectral model
(NMF variables)

: one-hot vector with one
at th element

Update estimated signal

Update demixing filter [Ono+, 2011]

Update estimated variance

Update NMF parameters [Nakano+, 2010]

Alternatively update both models

See also (pseudo code)
http://d-kitamura.net/pdf/misc/AlgorithmsForIndependentLowRankMatrixAnalysis.pdf
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Historical development
149

1994

1998

2013

1999

2012

Ye
ar

Many permutation solvers 
were proposed for FDICA

Many applications of NMF
Generative models in NMF
Many extensions of NMF

Independent component analysis (ICA)Independent component analysis (ICA)

Frequency-domain ICA (FDICA)Frequency-domain ICA (FDICA)

Itakura–Saito NMF (ISNMF)Itakura–Saito NMF (ISNMF)

Independent vector analysis (IVA)Independent vector analysis (IVA)

Multichannel NMFMultichannel NMF

2016

2009

2006

2011 Auxiliary-function-based IVA (AuxIVA)Auxiliary-function-based IVA (AuxIVA)

Time-varying Gaussian IVATime-varying Gaussian IVA

Nonnegative matrix factorization (NMF)Nonnegative matrix factorization (NMF)

Independent low-rank matrix analysis (ILRMA)Independent low-rank matrix analysis (ILRMA)

(Over-)determined problem Underdetermined problem

3.2

2.1
3.1

2.2

4.1

2.2
3.1

2.1

More efficient calculation 
for determined situation

More precise spectral 
model using NMF

• Multichannel NMF with full-rank covariance

Multichannel NMF revisited: model
150

Spatial covariances in 
each time-frequency slot

Observed 
multichannel signal

Spatial covariances 
of each source Basis matrix Activation matrix

Spatial model Spectral model

Partitioning function

Spectral patterns

Gains

Spatial property of each source Spectral patterns of all sources

Multichannel 
vector

Instantaneous spatial covariance

[Sawada+, 2013]
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• Relationship b/w ILRMA and multichannel ISNMF?

• Rank-1 spatial model

ILRMA and multichannel ISNMF
151

Source distribution: same
Spatial model: different

ILRMA Multichannel ISNMF
Instantaneous mixture 
in frequency domain

Mixture of full-rank covariances 
(and power spectrograms)

[Duong+, 2010]

: steering vector
(column vector of mixing matrix)

Equivalent to instantaneous mixture

• Multichannel ISNMF with rank-1 spatial model

ILRMA and multichannel ISNMF
152

Cost function of multichannel ISNMF

Substitute rank-1 spatial model                          into 

,
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• Multichannel ISNMF with rank-1 spatial model

ILRMA and multichannel ISNMF
153

Substitute                            into the cost function of multichannel ISNMF

Transform the variables as                   and 

Cost in 
ILRMA

• From IVA side:

• From multichannel NMF side:

Summary of ILRMA
154

Spectral model

Sp
at

ia
l m

od
el

Li
m

ite
d

FlexibleLimited

IVA

Multichannel 
NMF

ILRMA

NMF spectral 
model

Rank-1 spatial 
model

Introduce NMF spectral model (basis incrementation)

Introduce rank-1 spatial model (instantaneous mixture assumption)

Fl
ex

ib
le
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• Conditions

Experiment
155

Source signals Music signals obtained from SiSEC2011
Two microphones and two sources (determined)

Analysis window 512-ms-long Hamming window

Shift length 128 ms (1/4 shift)

Number of bases 30 per each source/60 for all sources

Evaluation score Improvement ot signal-to-distortion ratio (SDR)

Impulse response E2A
(reverberation time: 300 ms)

Experiment
• Two source case (ultimate nz tour)

156

Poor

Good

AuxIVA
(Laplace)

Multichannel 
ISNMF

ILRMA
(without Z)

ILRMA
(with Z)

20

15

10

5
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t [
d

B
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 Guitar
 Synth. 
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• Conditions

Experiment
157

Source signals Music signals obtained from SiSEC2011
Three microphones and three sources (determined)

Analysis window 512-ms-long Hamming window

Shift length 128 ms (1/4 shift)

Number of bases 30 per each source/90 for all sources

Evaluation score Improvement ot signal-to-distortion ratio (SDR)

Impulse response E2A
(reverberation time: 300 ms)

Experiment
• Three source case (bearlin-roads, 14 s)

158

12

10

8

6

4

2

0

-2

S
D

R
 im

pr
ov

e
m

en
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[d
B

]

4003002001000
Iteration steps

 IVA
 MNMF
 ILRMA                    
 ILRMA

without Z
with Z

IVA, 11.5 s

ILRMA w/o Z, 15.1 s
ILRMA w/ Z, 60.7 s

Multichannel ISNMF, 7647.3 s

Poor

Good

Multichannel ISNMF

http://d-kitamura.net/en/demo_en.htm
Other demo:
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Conclusion
159

Auxiliary function-based optimization

Complex-valued Tensor 

ICA, IVA NMF, MNMFILRMA

• Fast convergence
• Problem dependent, but “cookbook” works

• Multichannel audio mixture
• Frequency domain via STFT

• Independence
• Super-Gaussian

• Spectral bases
• Low-rank 

Component  Vector  Low-rank Matrix

Advertisement: book chapters
• MNMF and ILRMA will be published from Springer in 
March, 2018!

160

Audio Source Separation (Signals and 
Communication Technology) 
1st ed. 2018 by Ed. Shoji Makino

Ch. 5
General formulation of multichannel extensions of 
NMF variants; 
Hirokazu Kameoka, Hiroshi Sawada, and Takuya 
Higuchi.

Ch. 6
Determined Blind Source Separation with 
Independent Low-Rank Matrix analysis; 
Daichi Kitamura, Nobutaka Ono, Hiroshi Sawada, 
Hirokazu Kameoka, and Hiroshi Saruwatari.
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161

Thank you very much 
for attending this tutorial !

Hiroshi Sawada Nobutaka Ono Hirokazu Kameoka Daichi Kitamura 



SELECTED REFERENCES
Frequency-domain approach to convolutive BSS

• [Smaragdis, 1998], [Parra and Spence, 2000], [Schobben and Sommen, 2002],
[Anemüller and Kollmeier, 2000], [Asano et al., 2003], [Saruwatari et al., 2003],
[Saruwatari et al., 2006], [Yoshioka et al., 2008], [Duong et al., 2010]

• Permutation alignment [Sawada et al., 2004], [Sawada et al., 2007], [Sawada et al., 2011]
• Scaling adjustment to microphone observations [Cardoso, 1998], [Murata et al., 2001],

[Matsuoka and Nakashima, 2001], [Takatani et al., 2004], [Mori et al., 2006]

ICA: Independent Component Analysis

• Information-maximization approach [Bell and Sejnowski, 1995]
• Maximum likelihood (ML) estimation [Cardoso, 1997]
• Natural gradient [Amari et al., 1996], [Cichocki and Amari, 2002]
• Equivariance property [Cardoso and Souloumiac, 1996]
• FastICA [Hyvärinen et al., 2001]
• Complex-valued ICA [Bingham and Hyvärinen, 2000], [Sawada et al., 2003]
• Auxiliary function based ICA [Ono and Miyabe, 2010]

IVA: Independent Vector Analysis

• Multivariate p.d.f. [Hiroe, 2006], [Kim et al., 2006], [Kim et al., 2007]
• FastIVA [Lee et al., 2006], [Lee et al., 2007]
• HEAD problem [Yeredor, 2009]
• Auxiliary function based IVA (AuxIVA) [Ono, 2011], [Ono, 2012b], [Ikeshita et al., 2017]
• Time-varying Gaussian p.d.f. [Ono, 2012a], [Ono et al., 2012]
• Supervised or model-based IVA [Ono et al., 2012], [Lopez et al., 2015],

[Nesta and Koldovský, 2017]
• Online IVA [Kim, 2010], [Taniguchi et al., 2014], [Sunohara et al., 2017]

NMF: Nonnegative Matrix Factorization

• Auxiliary function based optimization for Euclidean distance NMF and generalized
Kullback-Leibler divergence NMF [Lee and Seung, 1999], [Lee and Seung, 2001]

• EM-based optimization for Itakura-Saito divergence NMF [Févotte et al., 2009]
• Auxiliary function based optimization for Itakura-Saito divergence NMF [Kameoka et al., 2006],

[Nakano et al., 2010], [Févotte and Idier, 2011]
• Auxiliary function based optimization for β divergence NMF [Nakano et al., 2010],

[Févotte and Idier, 2011]
• Auxiliary function based optimization for sparse NMF [Kameoka et al., 2009]

Multi-channel NMF

• EM-based optimization [Ozerov and Févotte, 2010]
• Auxiliary function based optimization [Sawada et al., 2012], [Sawada et al., 2013],

[Higuchi and Kameoka, 2014]

ILRMA: Independent Low-Rank Matrix Analysis

• Earlier idea (determined multi-channel NMF) [Kameoka et al., 2010]
• Multichannel NMF with rank-1 spatial model [Kitamura et al., 2015a]
• ILRMA [Kitamura et al., 2016], [Kitamura et al., 2018]
• Relaxation of Rank-1 spatial model [Kitamura et al., 2015b]
• Maximization-equalization algorithm [Mitsui et al., 2017b]
• Optimal window length [Kitamura et al., 2017]
• Based on Student’s t-distribution [Mogami et al., 2017]
• With sparse regularization [Mitsui et al., 2017a]
• With spatial regularization [Mitsui et al., 2018]
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Other references related to auxiliary function based optimization

• [Lange et al., 2000], [Hunter and Lange, 2000], [Hunter and Lange, 2004], [Ono et al., 2009],
[Ono and Sagayama, 2010], [Févotte and Idier, 2011], [Yoshii et al., 2013],
[Kameoka and Takamune, 2014], [Sun et al., 2017]
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